
A GENOME COMPRESSION ALGORITHM SUPPORTING MANIPULATION

Lenwood S. Heath, Ao-ping Hou, Huadong Xia, and Liqing Zhang∗

Department of Computer Science, Virginia Tech,
Blacksburg, VA 24061, USA

Email: {heath,aphou,xhd,lqzhang}@vt.edu

With the advent of the thousand dollar genome, one can anticipate the need to store, communicate, and manipulate

many human genomes. Data compression methods have been developed to store and communicate genomes efficiently.
Unfortunately, these methods do not support efficient manipulation (e.g., subsequence retrieval) of the compressed

genome. We develop a data compression scheme that achieves both efficient storage and efficient sequence manipula-

tion. We demonstrate the practicality of the method on two databases of genomes, one for the human mitochondrion
and one for the H3N2 virus. In both cases, we achieve high compression ratios and O(logn) subsequence retrieval

times.

1. INTRODUCTION

The human genome has about 3 billion DNA base

pairs (BPs), consisting of 23 chromosomes with

lengths ranging from about 33 to 247 million BPs. If

a researcher or physician is dealing with many human

genomes, then there is a challenge to store, commu-

nicate, and manipulate those genomes. Data com-

pression techniques can address the storage and com-

munication challenges. A manipulation task might

involve retrieving a number of random single nu-

cleotide polymorphisms (SNPs). Unless a data com-

pression technique is carefully designed, such ma-

nipulation will require the full decompression of the

genome before the SNPs can be retrieved.

Our study defines an efficient data structure for

storing genomic sequences and a fast algorithm to

randomly access subsequences. We achieve a 98.8%

compression ratio when compressing 5473 mitochon-

drial sequences and a 97.3% compression ratio for

H3N2 virus genomes. Furthermore, the algorithm

allows users to quickly compute statistics on various

types of mutations and to retrieve complete or par-

tial genomic sequences.

The contents of this paper are as follows. Sec-

tion 2 describes other genome compression studies.

Section 3 introduces our data structure and algo-

rithm. Section 4 gives results for two sets of genomic

sequences. Section 5 is discussion, and Section 6 con-

cludes.

2. RELATED WORK

Compression of sequential data has been of interest

for decades11. More recently, compression of genomic

data has become a focus. Most genome compression

algorithms in the literature aim to compress each

single genomic sequence directly (GenCompress3,

DNACompress4, GSCompress8, compression using

the Maximum Likelihood Model9). Those algorithms

apply either statistical methods or dictionary based

schemes to compress genomic data directly8. Al-

though they exploit properties of genomic sequential

data, such as palindromes or approximate repeats,

to the best of our knowledge, the best results ever

reported are by GSCompress8 with compression ra-

tios of 87-91%. The compression ratios of other al-

gorithms are about 78%4, 7. Most of the algorithms

mentioned try to capture the limited variation pat-

terns occurring in the sequences. Therefore, it is

better to compress similar sequences together. The

results presented in those papers are the output from

compressing a number of similar sequences. One rea-

son that GSCompress achieved the best results in

terms of compression ratios might be because they

compress all sequences of an organism together, ex-

ploiting the high similarity among sequences.

The idea of compressing human genomes by en-

coding their differences with a reference genome is

a relatively new idea presented by two groups from

UCI2, 5. The motivation for encoding only the differ-

ence comes from the fact that about 99.9% of any two

∗Corresponding author.

38



human genomes are identical to each other10. There-

fore, a delta (difference) representation that encodes

the differences between two human genomes can be

quite small5. Although a reference sequence is re-

quired to retrieve the information from delta repre-

sentations, a higher compression ratio is achieved by

amortizing the cost over many genomes. As reported

in Brandon et al.2, a 433-fold level of compression can

be achieved with an appropriate reference sequence

for the data set of 3615 mitochondria genomic se-

quences, which is significantly better than previous

work that compresses single genomic sequences.

Our work is also a delta compression. However,

our algorithm differs in that we focus not only on

compression but also on efficient manipulation. We

apply our algorithm to compress 5473 mitochondria

genomes from Genbank and achieve a compression

ratio of 98.8%. Our results represent an intentional

tradeoff between compression efficiency and manip-

ulation efficiency. In our scheme, absolute position

values can be reached without traversing all previous

variations, which is required of previous methods.

Although the compression ratio of our algorithm

is a bit lower than the UCI groups, our result is much

better than other cited work.

3. METHODS

3.1. Overview

Our genome compression strategy can be divided

into four stages, depicted in Figure 1. First, a

set (or database) of genomic sequences, called tar-

get genomes, are preprocessed for classification and

alignment. Second, we extract the differences be-

tween each target genome and a fixed reference

genome. Using those differences, we can retrieve

partial and complete sequences with the correspond-

ing reference genome. Third, to achieve more effi-

cient compression, we further compress the differ-

ences with Huffman codes. Finally, we use those

differences to extract mutation statistics in each tar-

get genome and to support retrieval of genomic se-

quences.

3.2. Data Preprocessing

The first stage is to preprocess a database of ge-

nomic sequences to classify them into several sets.

It also accomplishes pairwise sequence alignment of

each target genome with the reference genome. For

example, a human has 23 chromosomes, and each

chromosome is aligned with the corresponding chro-

mosome of the reference genome. For H3N2 viruses,

the genome consists of 11 segments, which we treat

as 11 chromosomes. After grouping sequences based

on chromosomes or segments, we use the multiple se-

quence alignment application MUSCLE6 to align the

sequences with the reference genome.

3.3. Difference Extraction

To describe differences as instructions consisting of

an operator, a position, and BPs, we define 5 kinds

of operators occurring between reference and target

genomes. The operators are insertion, deletion, re-

placement, insertion after replacement, and deletion

after replacement. Figure 2 shows examples of the

instructions. All of the genome positions in this pa-

per refer to the absolute positions on the reference

genomes. The first example, in Figure 2a, is insert-

ing 2 BPs (G and A) at position 140 of the reference

genome. The second example, in Figure 2b, is delet-

ing 2 BPs at position 151. The third example, in

Figure 2c, replaces 3 BPs (CTT to GAA) at posi-

tion 161. Generally, the three operators (insertion,

deletion, and replacement) are sufficient to represent

the differences in two genomic sequences and to de-

velop the difference set of a target genome.

However, using only three basic operators causes

overlapping positions in the difference set. For in-

stance, the differences in Figure 2d are replace (170,

A) and insert (170, GA). This is ambiguous if we

simply put the two encoded differences (instructions)

together: we do not know whether the content at

position 170 is A or G. To remove the ambiguity,

we have to define an order between the two instruc-

tions. That means we have to use at least one ad-

ditional bit to encode the difference. In addition to

that, we have to read through and find out all in-

structions related to a specific position in order to

decompress the content of that position. This in-

creases not only implementation complexity, but also

algorithmic complexity. Therefore, we define two ad-

ditional instructions, “insertion after replacement”

and “deletion after replacement” to make the search

unique. Figure 2d shows combined replacement and

39



Fig. 1. Genome Compression Flow. Stage 1. Categorize and retrieve sequences for preprocessing. Stage 2. Extract the dif-
ferences between the reference genome and each target genome. Stage 3. Encode the differences using hybrid Huffman coding.

Stage 4. Provide statistics and support efficient retrieval for researchers.

insertion. Figure 2e gives another example combin-

ing replacement and deletion.

3.4. Difference Compression

Once we extract the differences from the target

genomes, we encode the instructions with Huffman

codes. According to Figure 2, an instruction con-

sists of three different fields: operator, position, and

BPs. Because the maximum size of a human chro-

mosome does not exceed 250 million BPs, the stored

position utilizes only the last 29 bits out of a 32-bit

integer type. Hence, it is efficient to combine an op-

erator with 3 bits and a position with 29 bits into

a new 32-bit integer type in our method. Likewise,

the combined value is also defined as position ear-

lier. After the combination, we extract the Huffman

codes for position and BPs.

Figure 3 shows the flow of encoding instructions

with a Huffman code. First, we count the frequen-

cies of the different items appearing in the complete

genome for position and BPs. Next, we construct two

mapping tables for positions and base pairs to give

each item an index. Then, we build Huffman codes

for each table according to the frequencies. Finally,

we translate each difference into the corresponding

40



Fig. 2. The operators describing 5 kinds of differences. Transforming those conditions to five instructions with reference

genome’s position makes it unique in a target genome. (a) The example of insertion is that the target genome has 2 extra BPs
at position 140 and 141. (b) The example of deletion is that the target genome misses 2 extra BPs at positions 151 and 152. (c)

The example of replacement is that the target genome has 3 different BPs at positions 161 to 163. (d) The example of insertion
after replacement is that the target genome replaces only 1 base pair and inserts 2 extra BPs at positions 170 to 172. (e) The

example of deletion after replacement is that the target genome has only 1 different BP and misses 2 extra BPs at positions 180

to 182.

Huffman code.

Actually, the values encoded or decoded with

a Huffman code are related to the mapping table

indices rather than positions or BPs. For exam-

ple, to encode the instruction, replace (161, GAA),

the compression process combines the operator (re-

place; code=3) and position (161) into the value

0x600000A1. After counting the frequencies of the

value and GAA respectively, the value falls in the

14th entry of the position mapping table, and string

GAA falls in the 12th entry of the base pair map-

ping table. By constructing a Huffman tree for each

of these two tables, the Huffman codes of 14 and 12

are 10001 and 10011 respectively. Finally, we write

0x600000A1 into the 14th entry of the position map-

ping table and 10001 into the 14th entry of the po-

sition Huffman table. Besides, we write “GAA” into

the 12th entry of the base-pair mapping table and

10011 into the 12th entry of the base-pair Huffman

table.

After constructing the tables, we encode the dif-

ferences for each genome. During the encoding of the

instructions, we use binary search to seek the corre-

sponding indices of a position and BPs. Then, we

index the Huffman tables to seek the codes. Finally,

we store them onto disk. However, if there is no

corresponding item in the tables, we store the prim-

itive value binding with position and operators or a

character string for BPs. Storing primitive data and

compressed data in the same file makes our compres-

sion more flexible to permit a new target genome to

use the old tables for compression.

41



Fig. 3. The compression flow for Huffman coding. After extracted differences, we construct Huffman tables by collecting statis-

tics of positions and BPs among different target genomes in order to store frequent position or BPs with short code length. Once
we have the Huffman codes for position and BPs, we encode all difference files for further compression with Huffman codes.

3.5. Data Structure for Extension of
New Genomes

Storing the compressed instructions and primitive in-

structions in the same file requires an efficient data

structure. Figure 4 is the data structure used in our

compression method. In this structure, the first bit

of each byte is defined as the beginning of an instruc-

tion. Using this bit can assist searching to reach an

instruction in a specific position without having to

decode from the beginning. Furthermore, we can do

a binary search with this bit identifying an instruc-

tion from any disk position. Next, the remaining 7

bits store the difference consisting of a position and

BPs. Due to hybrid compression, there are two bits

to identify whether the compressed data has a Huff-

man code or not. This is because some Huffman

codes of the rare positions or BPs are longer than

non-coded positions or BPs. Hence, we need to use

a hybrid data structure to optimize compression size.

Since we encode positions and BPs with/without

Huffman codes, there are 2 bits used for position and

BPs to identify Huffman/non-Huffman codes. Fi-

nally, we store the compressed or primitive difference

after those control bits.

3.6. Compression Applications

There are three applications (manipulations) devel-

oped on our compressed database: getting statistics

of mutations, retrieving partial target genomic se-

quences, and recovering the entire target genome.

Because our instructions include the absolute posi-

tion of the reference genome, one can easily retrieve

BPs at any position or a range of positions. Figure 5

illustrates our search engine. First, we get the last

instruction before the requested position from the in-

put and jump to the position in the reference genome.

Next, we access the reference genome and target dif-

ferences sequentially, because the request from in-

put is usually to retrieve a portion of a genomic se-

quence. For example, when retrieving 200 BPs from

position 1234, the method fetches the last instruction

before 1234. Then, it reconstructs the following 200

42



Fig. 4. The compression data structure. To support adding a new target genome to the current database, the data structure

records Huffman coding method or non-Huffman method for positions and BPs. Once the decoder attains the coding information,
it decodes positions and BPs either by the Huffman decoder or as primitive data.

BPs. Therefore, the most time-consuming stage of

the search is the binary search of the last instruction

before the requested position; its time complexity is

O(log n) where n is the number of instructions for

compressing a sequence.

4. RESULTS

In this section, we present our results with H3N2 ge-

nomic sequences and human mitochondrial genomic

sequences.

4.1. Genome Sequences

We use two sets of genomic sequences, H3N2 vi-

ral genomic sequences and human mitochondrial ge-

nomic sequences. The first is retrieved from the virus

set (http://www.fludb.org), and the second is re-

trieved from GenBank. Because there are at most 11

segments in an H3N2 genome, we arbitrarily select 1

reference segment for each segment from the H3N2

genomic sequences. For the mitochondrial reference

genome, we use the revised Cambridge Reference Se-

quence (GenBank accession number: NC 012920).

Altogether, there are 1455 H3N2 genomic sequences

and 5473 mitochondrial sequences compressed with

our compression algorithm. The average length of

11 H3N2 segment sequences is less than 1400 BPs.

The average length of the mitochondrial sequences

is 16,569 BPs. Our computational platform consists

of an Intel T770 2GHz processor with 3GB memory,

and the operating system is Linux Fedora 8.

4.2. Compression Results

To compare with other compression algorithms, we

use gzip and bzip2 to compress primitive genomic

sequences. Table 1 shows the sizes of mitochondrial

sequences and H3N2 sequences with different com-

pression methods. The first two columns contain the

results of general compression tools. The third col-

umn contains the results of encoding text-based se-

quences to binary codes with position/base-pair ta-

bles. The last column contains the results using Huff-

man codes for compression. Comparing mitochon-

43



Fig. 5. Once commands are received, the search engine uses binary search for the last instruction before the required position

of the command. After reaching the instruction, the method retrieves parts of the reference genome and instructions in order to

retrieve the primitive target genomic sequence.

Table 1. Comparison with other tools

Mitochondrion (Primitive size 91,590,508 bytes)

gzip bzip2 DNACompress GenCompress binary Huffman

Size 10,860,887 3,096,944 80,271a 46,213a 2,211,120 1,101,628

Ratio 0.8815 0.9662 0.7612 0.8617* 0.9759 0.9880

H3N2 (Primitive size 1,995,960 bytes)

Size 101,494 54,314 474,139 25,837 73,901 52,927

Ratio 0.9492 0.9728 0.7626 0.9870 0.9630 0.9735
a Since GenCompress cannot deal with large data sets and DNACompress compresses only single sequence files, only 20 randomly

selected mitochondrial sequences are compressed for comparison. Therefore, the file size shown here is not of the same order as
found in other columns.

drial sequences and H3N2 genomic sequences, the

mitochondrial sequences achieve more efficient com-

pression than H3N2 sequences. This might be due to

the fact that there are more mitochondrial sequences

than H3N2 sequences and mitochondrial sequences

are longer than H3N2 sequences; more Huffman code

can be shared by each mitochondrial genomic se-

quence as a result. Thus, increasing the number of

genomic sequences and the sequence length can im-

prove our compression efficiency.

Both gzip and bzip2 are general compression

tools. To compare our algorithm to those specific to

genomic compression, we pick two algorithms, Gen-

Compress and DNACompress3, 4, for which we can

find the authors’ implementations, and run those

programs with the same data sets we used. The re-

sults are also listed in Table 1. All the results are

achieved by compressing all sequences in a batch,

except for the result indicated with *, when Gen-

Compress compresses the entire mitochondrial data

set. Because GenCompress crashes while compress-

ing 20 mitochondrial sequences together, the result

with * is achieved by compressing mitochondrial se-

quences one by one. The performance of DNACom-

44



press is not only worse than ours but also worse than

general compression software. GenCompress has the

best compression ratio for the H3N2 data set, but

ours are still comparable to it. GenCompress per-

forms poorly on the mitochondrial data set, partly

because the software from the authors has to process

the mitochondrial sequences one by one. But we con-

jecture that it is not a good idea to build one lengthy

table containing all variation patterns for the whole

5473 mitochondrial data set even with a faultless im-

plementation. So it is likely that our algorithm will

eventually beat such direct compression software for

large data sets, such as the mitochondrial one.

Table 2 shows the execution time of our algo-

rithm for compressing the H3N2 and mitochondrial

databases. The first row is the time to make align-

ments and extract differences. The second row is the

time to construct Huffman tables. The third row is

the time to convert the original genomic database to

a compressed database. Finally, the fourth row is

the time to retrieve the original database from the

compressed database. Although the total compres-

sion time for the mitochondrial sequences is over 24

hours, our algorithm can finished the compression

and decompression in seconds or minutes. This is

because most of the compression time is spent on

alignment. Hence, our algorithm reaches the require-

ment of O(log n) complexity in decoding parts.

Table 2. Time of Encoding and Decoding H3N2 and
mitochondrial sequences

H3N2 Mitochondrial

Alignment/ Difference 103.84s 23.56Hr

(Difference ) (3.47s) (159.14s)

Huffman table 2.38s 17.57s

Convert 13.59s 936.333s

Retrieve 11.02s 54.17s

4.3. Application Showcase

In the above, we have shown how our algorithm fa-

cilitates the storage and transmission of genomes by

efficient compression. Another benefit of our algo-

rithm, and the more important aspect, is that our

compressed data maintains a superior structure via

flexible indexing, which enables efficient manipula-

tion and analysis of the data. Here, we showcase how

our methods help to explore or manipulate genomes

facilitated by such flexible indexing.

It is easy with our software to analyze distribu-

tion patterns of differences among genomes, as we

pre-index every difference in the delta representa-

tion. Figure 6 shows an example. It gives the dis-

tribution map of all differences (termed mutations)

among the whole population of 5473 mitochondrial

genomes. The delta map reveals interesting features

of the genomic variation. For example, it is straight-

forward to find in the figure that mutations of the

first 500 positions and last 500 positions have a much

higher probability to occur than those of the posi-

tions in between. This helps to discover a pattern

that otherwise might be hidden: at the head and tail

of the mitochondrial genomic sequences, mutations

are very likely to happen. Actually, further analy-

sis verifies this observation: 840 out of 5473 mito-

chondria sequences have a missing head and/or tail

compared to the reference genome, although they are

claimed to be “complete” in the Genbank database.

This example exemplifies how the positions and mu-

tations our software organizes reveal common varia-

tion patterns in the population of the genomes.

5. DISCUSSION

In previous sections, we have demonstrated how we

use Huffman coding to compress the delta informa-

tion that we generated. The reason that Huffman

coding is effective here is due to the characteris-

tics of our target data sets. The genomic sequences,

whether viral, mitochondrial, or full human genomes,

are special data. First, two genomes from two indi-

viduals have high similarity to each other. Second,

the differences among many genomes can also be

classified into a limited set of patterns with highly

skewed distributions. By analyzing and retrieving

such patterns from a database of genomes, we can

design more efficient delta representations for spe-

cific populations of genomes.

Here we compute some statistics for the differ-

ences of the 5473 complete mitochondria sequences

from GenBank. Figure 7 shows the frequency dis-

tribution of all the instructions. In the figure, each

point on the x-axis represents a unique instruction

that is ordered according to its number of occur-

rences in the data set. Similarly, Figure 8 shows

45



Fig. 6. The mutation distribution.

the frequency distribution of positions where instruc-

tions happen. We see that both figures show a highly

skewed distribution. A small set of items (instruc-

tions or positions) have a very high frequency of ap-

pearance in difference sets, while a multitude of other

items occur only a few times in the genomic data

set. Such skewed data distributions suggest that we

could apply a code system like Huffman coding to

compress those items with respect to their distribu-

tion. Experiments in Section 4 also demonstrate the

possibility to apply mixed codes of Huffman coding

and direct bit compression.

Another interesting observation is that the two

distributions are almost the same, not only qualita-

tively, but also quantitatively. If we define operation

as (operator + BPs) and deem instruction as (posi-

tion+operation), then this implies that positions are

highly correlated with operations. To verify this ob-

servation, we compare the number of mutated posi-

tions to that of instructions. For the 5473 mitochon-

drial sequences, there are a total of 5436 positions

that have some instruction; and there are 6391 in-

structions in total occurring in these positions. This

means that only 1.176 instructions are encoded with

one position on average. Therefore, possibly there

is no need to encode the position separately from

the operations. To combine the two into one item

and compute Huffman codes for the whole instruc-

tion naturally leads to space saving during compres-

sion.

Such statistical analysis is also conducted over

the set of 1455 H3N2 virus sequences. Their dis-

tributions (Figure 9 and Figure 10) show very simi-

lar difference patterns as those of mitochondrial se-

quences. We conjecture that the patterns that we

observed are common to most genomes that we aim

to compress and manipulate. Such generality is eas-

ily explainable biologically. Therefore, we believe the

presented compression code applies to most other ge-

nomic data as well.

6. CONCLUSIONS AND FUTURE
WORK

This paper proposes a framework to compress and

manipulate large groups of genomic sequences. We

compare a target genome with a selected reference

genome and represent the target genome using the

identified differences. Such differences not only re-

duce the space to store a genome, they also preserve

the alignment information in terms of the reference

46



Fig. 7. Frequency Distribution of Different Instructions
(Mitochondria data set)

Fig. 8. Frequency Distribution of Changed Positions
(Mitochondria data set)

Fig. 9. Frequency Distribution of Different Instructions

(H3N2 data set)

Fig. 10. Frequency Distribution of Changed Positions

(H3N2 data set)

genome. Therefore, by carefully designing the data

structure to store those differences, we create an effi-

cient indexing scheme that facilitates fast search for

and access to compressed genomes. The experimen-

tal results demonstrate that our solution enables the

flexibility of manipulating genomic sequences, while

achieving a high compression ratio.

The presented work is a prototype to exemplify

the framework we propose. There are still research

topics to explore to either improve the manipulation

efficiency or achieve better compression ratios. One

thing is that we only apply a bit-level representation

and a simple usage of Huffman coding to compress

the delta information. It is expected that we could

further increase the compression ratio by utilizing

mature techniques of direct genome compression that

do not destroy our indexing structure.

Another issue is the choice of the reference

genome for the algorithm. In the paper, we choose

the Revised Cambridge Reference Sequence (rCRS)

to compress the mitochondrial data set, because the

rCRS was firstly presented in 19811 and has been

used as a standard reference sequence extensively

thereafter. It has become the de facto sequence

when people extract SNPs for their mitochondrial

sequences. Using the rCRS as the reference genome,

we can conveniently produce SNPs consistent with

others. However, for compression purposes, it is bet-

ter to extract the central point of the whole data

set and use it as the reference genome. In this way,

we can achieve the best performance in term of the

compression ratio. And such a reference genome can

be easily synthesized by choosing the value of the

majority nucleotide at each position.

In this paper, we apply binary search as the in-

dexing scheme to access/search genomic sequences.

A better solution is to design a perfect hash function

to index the delta representation. Hashing is a classic

data structure in computer science for rapid access

to data that is identified by a key. Most hashing

research assumes dynamic data, so that data items

can be inserted or deleted at any time. In our ap-

47



plication, we can assume that data are static, since

genomes do not change. We will design indexing

schemes based on such perfect hash functions and

compare the performance to binary search to evalu-

ate the time/space tradeoff.

ACKNOWLEDGMENTS

The work was supported by NSF grant IIS-0710945

to L.Z.

References

1. S. Anderson, A. T. Bankier, B. G. Barrell,
M. H. de Bruijn, A. R. Coulson, J. Drouin,
I. C. Eperon, D. P. Nierlich, B. A. Roe,
F. Sanger, P. H. Schreier, A. J. Smith,
R. Staden, and I. G. Young, Sequence and organi-
zation of the human mitochondrial genome, Nature,
290 (1981), pp. 457–465.

2. M. C. Brandon, D. C. Wallace, and P. Baldi,
Data structures and compression algorithms for ge-
nomic sequence data, Bioinformatics, 25 (2009),
pp. 1731–1738.

3. X. Chen, S. Kwong, and M. Li, A compression
algorithm for DNA sequences and its applications

in genome comparison, in The Tenth Workshop on
Genome Informatics (GIW’99), 1999, pp. 52–61.

4. X. Chen, M. Li, B. Ma, and J. Tromp, DNACom-
press: Fast and effective DNA sequence compression,
Bioinformatics, 18 (2002), pp. 1696–1698.

5. S. Christley, Y. Lu, C. Li, and X. Xie, Human
genomes as email attachments, Bioinformatics, 25
(2009), pp. 274–275.

6. R. C. Edgar, MUSCLE: Multiple sequence align-
ment with high accuracy and high throughput, Nu-
cleic Acids Research, 32 (2004), pp. 1792–1797.

7. T. Matsumoto, K. Sadakane, and H. Imai, Bio-
logical sequence compression algorithms, Genome In-
formatics, 11 (2000), pp. 43–52.

8. H. Sato, T. Yoshioka, A. Konagaya, and
T. Toyoda, DNA data compression in the post
genome era, Genome Informatics, 12 (2001),
pp. 512–514.

9. I. Tabus and G. Korodi, Genome compression
using normalized maximum likelihood models for
constrained Markov sources, in Information Theory
Workshop, ITW ’08. IEEE, 2008, pp. 261–265.

10. J. C. Venter et al., The sequence of the human
genome, Science, 291 (2001), pp. 1304–1351.

11. J. Ziv and A. Lempel, A universal algorithm for
sequential data compression, IEEE Transactions on
Information Theory, 23 (1977), pp. 337–343.

48



placeholder

49


