

CLASSIFICATION OF LARGE MICROARRAY DATA SETS USING FAST RANDOM FOREST

CONSTRUCTION

E. A. Manilich 1,2,* , Z. M. Ozsoyoglu 1, V. Trubachev 2 ,T. Radivoyevitch 3

1Computer Science Department, Case Western Reserve University,

 Cleveland, Ohio 44106, USA

2Digestive Disease Institue, Cleveland Clinic

Cleveland, Ohio 44195, USA
*Email: manilie@ccf.org

3Department of Epidemiology and Biostatistics, Case Western Reserve University,

 Cleveland, Ohio 44106, USA

Random forest is an ensemble classification algorithm. It performs well when most predictive variables are noisy and can be used

when the number of variables is much larger than the number of observations. The use of bootstrap samples and restricted subsets of

attributes makes it more powerful than simple ensembles of trees. The main advantage of a random forest classifier is its explanatory

power: it measures variable importance or impact of each factor on a predicted class label. These characteristics make the algorithm

ideal for microarray data. It was shown to build models with high accuracy when tested on high dimensional microarray data sets.

Current implementations of random forest in the machine learning and statistics community, however, limit its usability for mining over

large datasets as they require that the entire dataset remains permanently in memory. We propose a new framework, an optimized

implementation of a random forest classifier, which addresses specific properties of microarray data, takes computational complexity of

a decision tree algorithm into consideration, and shows excellent computing performance while preserving predictive accuracy. The

implementation is based on reducing overlapping computations and eliminating dependency on the size of main memory. The

implementation’s excellent computational performance makes the algorithm useful for interactive data analyses and data mining.

* Corresponding author.

1. INTRODUCTION

The fact that microarrays allow investigations of

thousands of genes at the same time is an advantage

from a data generation perspective, but a challenge from

a data analysis perspective. Analyses of microarray data

pose a challenge due to the extremely large number of

predictors, their possible interactions, and the

comparatively small number of samples. As a result,

classical statistical techniques cannot be applied directly

to microarray datasets and novel methods are necessary.

Random forest is one such method.

Random forest is a classification ensemble

algorithm developed by Leo Breiman that uses multiple

binary decision trees. Each of the classification trees is

built using a sample of data and at each node a randomly

chosen set of variables is considered for the best split.
1

Random forest has become a major data analysis tool. It

has been applied to large-scale tissue microarray data

and genome-wide association studies for complex

diseases.
2-9

The random forest algorithm is suitable for

microarray data mining for several reasons. Firstly,

classification trees are non-parametric and do not make

any assumptions about the underlying distribution.

Second, it performs excellently even when most of the

predictive variables are noisy. Third, it can be used

when the number of variables is much larger than the

number of observations. And lastly, it returns measures

of variable importance that can be used for gene

selection.
 1

The accuracy of random forest is comparable or

superior to alternative state-of-the-art microarray data-

82

based prediction methods.
3
 Comprehensive evaluation

of random forest applications to real microarray data

classification problems have shown high predictive

accuracy.
3,4,9

 This evaluation included an assessment of

the effects of changes in the parameters of random forest

on its classification performance. Changes in the two

important parameters, the number of input variables

selected at each split and the number of trees in a forest,

have negligible effects, i.e. the algorithm is robust to the

extent that there is no need to fine-tune default

parameters or pre-select variables.

2. EXISTING RANDOM FOREST

FRAMEWORKS

High quality random forest implementations include :

the original Fortran code from L. Breiman and A.

Cutler, the R package port of this code,

randomForest by A. Liaw and M. Wiener (this code

is available through the Comprehensive R Archive

Network, CRAN), and Weka, a collection of machine

learning algorithms for data mining tasks implemented

in Java.
10-12

 A problem with each of these frameworks,

however, is that their applications to large microarray

datasets are limited due to high computational

requirements.

Performance and scalability have not been the

primary design objectives of the presently available

frameworks; instead, their emphasis has been on the

accuracy of the implementation. Efficiency and

scalability are major issues of concern when random

forest is applied to very large datasets. The existing

implementations mentioned above require that the entire

training data remains permanently in main memory and

this limits their usability.

In response to this limitation, preprocessing steps

that reduce the dimensionality of the data have been

applied to large datasets before their submission to the

random forest algorithm. The process of variable

reduction has, however, drawbacks that include changes

of the resulting classification model, reduced accuracy,

and loss of the potentially useful and interesting

prediction variables. Thus, it is important to understand

the computational complexity of random forest,

investigate the use of the algorithm for classification of

large microarray datasets, and provide a scalable version

of random forest that produces exactly the same

decision trees.

3. DECISION TREE CLASSIFIERS

In this section, we discuss computational resources

required by random forest and examine previously

known scalable algorithms for construction of

classification trees.

3.1. Computational resources

 Algorithms used to construct ensembles of

classification trees can be characterized by their

computational complexity, the distribution of execution

times of specific operations, and identification of

operations that are the most computationally

expensive.
13

Algorithm learning times are dominated by two

operations: 1) the sorting of training data on each

candidate variable selected for the split and, to a lesser

extent, 2) the random selection of sample and variable

subsets. At every step, a classification tree uses

exhaustive search of all possible combinations of

variables and split points to achieve the global minimum

in impurity. To select the best splitting variable, the

algorithm requires sequential access to all numeric

variables in sorted order. The procedure of sorting

requires many comparisons and the procedure of

sampling requires intensive memory access.

Respectively, these operations consume approximately

60% and 20% of of the execution time.

3.2. Previous work in the database

literature

Several software frameworks have addressed scalability

requirements of tree construction algorithms without

modifying the result. SLIQ, one of the first decision tree

algorithms for large datasets, uses a technique where

after presorting the sort order is maintained in the tree

growth phase to avoid resorting and to reduce the cost of

numeric variable evaluations.
14

 SLIQ separates the input

dataset into attribute lists at the beginning of the

algorithm and it thus requires an in-memory data

structure that grows linearly with the number of records

in the training dataset.

A second framework, SPRINT, removes the in-

memory requirement of SLIQ and instead proposes a

new data model that runs with a minimal amount of

main memory.
15

 Similar to SLIQ, SPRINT also

minimizes sorting by creating a sorted attribute lists at

the beginning of the algorithm, but it uses a different

83

data structure wherein the initial sorted attributes lists

are associated with the root of the classification tree and

as trees grow, the attribute lists are partitioned and

distributed among children. The costly operation here is

the distribution of attribute lists at each node of the

decision tree. This operation involves significant

rewriting of the disk resident dataset with large numbers

of attributes and it also triples the size of the training

dataset.

As a third framework, RainForest can be viewed as

an optimized version of SPRINT.
16

 The optimization is

based on the observation that the distribution of distinct

class values for each predictor variable contains

sufficient statistics to evaluate all possible split points.

RainForest proposes a new structure, a set of aggregate

lists of all predictor variables, that can be viewed as a

compressed version of attribute lists used in SPRINT.

For categorical variables, this structure is proportional

to the number of distinct values of predictor variables

and is highly likely to fit in main memory; the reduced

main memory requirements lead to significant

performance improvements over SPRINT for datasets

with categorical variables. For continues numeric

variables, however, the size of the required in-memory

data structure will again be equal to that of an attribute

list in SPRINT. Thus, to take advantage of RainForest,

numeric variables have to be discretized, and that may

impact the classification results.

SPRINT and RainForest are the fastest scalable

classification tree construction algorithms proposed

previously that focus on scalability issues and which do

not modify results of a classification method. The main

contribution of this paper is a scalable random forest

framework for high dimensional real valued datasets

(e.g. microarray data), also with no adverse impact on

the quality of the classification model.

4. FAST RANDOM FOREST

In this section, we introduce a framework that results in

a scalable random forest algorithm and we discuss how

it encompasses previous work. The emphasis of this

work is a fast implementation of the algorithm for

microarray datasets that are too large to fit in memory.

The goal here is to speed up the tree growth phase, as

this is the most computationally expensive component of

the algorithm. Observations of the nature of microarray

data enable significant computational saving.

4.1. Algorithm description

Random forest builds an ensemble of classification

trees. Each of the classification trees is built using a

bootstrap sample of the data, and at each node of the

tree a random subset of the variables is examined for the

best split. The algorithm uses the impurity-based Gini

index as an attribute selection measure used to assess the

splitting criterion.
17

To evaluate the impurity function

and decide how to split a node based on a numeric

attribute, the algorithm requires access to each randomly

selected attribute in sorted order. The number of

searches for the best split point is proportional to the

number of samples and attributes in the training dataset.

Note that each randomly selected attribute is examined

independent of the other predictor attributes.

The proposed fast random forest algorithm avoids

repeated sorting. It uses a one-time sort and separate

lists for each predictor attribute. The pre-processing step

of one-time sorting reduces the computational burden at

each node. The algorithm makes one scan over the

dataset and constructs a list of sorted indices for each

predictor attribute in the dataset. Entries into a list of

sorted indices contain record identifiers of the training

dataset sorted by the value of the corresponding

attribute. Unlike usual sorting methods, which store the

sorted values, our algorithm stores the original indices

of the sorted records instead. Additionally, a class list of

length equal to the number of records is used to

reference a class label of each record and a pointer to a

leaf node of the classification tree. At the beginning of

the tree construction process, pointers for records

included in a bootstrap sample are initially contained in

the root node.

Due to the nature of a typical microarray dataset

with a relatively small number of samples, we assume

that a class list and at least one list of sorted indices

always fit into main memory. Lists of sorted indices of

each predictor attribute are needed in main memory, one

at a time, to be given as arguments to the Gini

coefficient function as a metric of impurity.

84

 R1 R2 R3 R4 R5 ...

Gene 1 5.513 8.576 10.523 9.717 12.533 ...

Gene 2 4.025 11.015 10.169 7.651 12.058 ...

Gene 3 7.636 11.914 10.802 12.043 9.889 ...

Gene 4 11.769 12.428 10.974 9.889 4.774 ...

...

Class 1 2 1 1 2 ...

Gene 1 1 -2 4 -3 5 ...

Gene 2 1 -4 3 -2 5 ...

Gene 3 1 -5 3 -2 4 ...

Gene 4 5 -4 3 -1 2 ...

...

Fig. 1. Sample dataset and corresponding lists of sorted indices. The

gene expression levels in the top row are representative of robust

multi-chip analyses (RMA) wherein units are on a log2 scale.

Calculation of the Gini index is based on the

relative frequency, or distribution, of class labels and

does not require access to actual values. Note that a list

of sorted indices and a class list have all the necessary

information to calculate the Gini index. However, one

subtle refinement to our implementation has to be taken

into consideration as the split point is evaluated at the

midpoint between consecutive distinct data values.

Thus, the Gini index will not be evaluated if values

corresponding to the two adjacent sorted indices are

equal. This requirement is not naturally fulfilled by a list

of sorted indices as an index of the original value cannot

be used to determine if two adjacent values are equal.

To overcome this limitation, we implemented the

following adjustment. Each index is incremented by one

and represented in a form of positive non-zero integers.

Thereafter, the sign of each index is adjusted to reflect

changes in the value. If the two adjacent values are

equal, the sign will remain the same; otherwise, the sign

will change. As a result of this, changes or lack thereof

in the values can be detected. Figure 1 represents a

sample dataset and corresponding lists of sorted indices

as input to the fast random forest algorithm (Algorithm

1).

4.2. Discussion

Our implementation of random forest employs a

decision tree algorithm that adopts a middle ground

between SLIQ and SPRINT, the fastest previously

proposed scalable classification tree construction

algorithms for datasets with continuous numeric values.

Similar to SLIQ and SPRINT, the algorithm avoids

sorting at each node by using pre-sorting techniques.

The main difference between previously described

scalable decision tree algorithms and the proposed

implementation is the use of a novel data structure, a list

of sorted indices.

Fast random forest is based on the observation that

a list of sorted indices for each predictor attribute and a

class list contain sufficient statistics to calculate the Gini

index and select the best split point. The fast random

forest algorithm requires a minimal amount of memory

equal to the size of a list of sorted indices and a class

list. The algorithm offers significant performance

improvement over SPRINT for datasets with large

numbers of attributes. Firstly, it does not triple the size

of the training dataset and, therefore, utilizes main

memory more efficiently. And secondly, it does not

require a costly operation to partition and distribute

attribute lists among children.

85

The critical difference of our data model is that

entries into a list of sorted indices contain record

identifiers only. Thus, the algorithm makes more

efficient use of available memory. For most microarray

datasets, we expect that a randomly selected set of

sorted indices at each node of the tree will fit in main

memory. The assumption that a set of sorted indices of

the root node fits in memory does not imply that the

complete dataset fits in memory, since random forest

selects a random subset of attributes at each node. If not,

it is highly likely that at least a list of sorted indices of

each individual predictor attribute can fit in main

memory.

5. EXPERIMENTAL RESULTS

The gap between the size of real-life datasets and

scalability of available data-mining applications that

implement the random forest classifier is especially

visible when analyzing microarray data. Both the Weka

software framework and the R package randomForest

failed to process a dataset with 200 samples and 20,000

gene probes.

The scalable and fast implementation of random

forest was used to look for differences between the

genomes of patients with a recurrent colon cancer and

those without. This method allowed us to find genetic

markers that were previously not correlated with

colorectal cancers.
 18

As part of the algorithm testing, both our memory-

based and fast file-based implementations of the random

forest algorithm were timed. The tests were run on an

Intel Core 2 Duo E6550 CPU (2.33 GHz), with 1.95 GB

of RAM. The operating environment was an unmodified

Java 6 SE (update 16) environment running under

Windows XP SP3.

A comparison of our memory- and fast file-based

implementations of the random forest algorithm is

provided in Table 1 to highlight the origin of the

excellent performance and scalability of fast random

forest. Our new implementation not only makes it

possible to analyze large microarray datasets on

personal computers, but it also makes the algorithm

available for efficient and interactive data analyses.

As expected, the memory-based implementation is

much faster for small data sets. For large datasets (e.g.

Algorithm 1. Fast random forest induction schema and optimization.

Input: matrix W s × g, with s samples and g genes, number of trees nTrees

Output: ensemble of nTrees classification trees

Preprocessing (sorting):

1. Create g lists of sorted indices.

2. Increment each index by 1.

3. Run through values, changing sign of the index if adjacent values are not equal

4. Write each list of sorted indices to a new line in the sort file.

5. Index files: write byte offsets for each line in the data and sort files.

BuildForest(sample W):

 for (i = 1 , i <= nTrees, i ++)

 BuildTree(I)

 end for

BuildTree(sample W):

 if (class list is homogeneous)

 #branch complete

 Save outcome as leaf node.

 else

 Pick a subset g' consisting of attributes to examine.

 FindBestSplit(g') using the Gini coefficient.

 Read line corresponding to the split attribute from data file into memory.

 Use split value to partition records into W'1 and W'2

 BuildTree(W'1)

 BuildTree(W'2)

 end if

FindBestSplit(attributes g'):

 for (each attribute in g')

 for (j = 2 , j <= s , j++)

 if (sign of (j - 1)th sorted index == sign of (j)th sorted index)

 skip to next iteration

 else

 calculate Gini index

 end if

 end for

 end for

 select best split criterion based on Gini index

86

20,000 attributes and 1,000 records), however, the

memory-based implementation will run out of memory,

while the file-based implementation will successfully

generate the given number of trees.

In the file-based implementation, increasing the

number of records and number of trees has a large

impact on performance, as both increase the total

number of sorted indices that need to be read from the

sort file (Figures 2-7). The file read/write operations

take up the biggest chunk of time, with the exception of

sorting with large numbers of trees (see Figure 7). In this

case, the sorting time will remain constant and take up

an increasingly smaller percentage of time as the number

of trees increases. The other file-intensive operation is

picking the attributes to examine, as the selected

attributes' sorted indices must be read into memory from

the sort file each time. This is the single most expensive

operation in the entire process (see Figures 5-7). Due to

the special way the sorted indices are modified before

storage, setting the split point requires no interaction

with the file system and takes up a very small portion of

execution time. Performing the split, on the other hand,

does require reading the data file, but only one line.

Thus, it does not take up a very large portion of the

execution time.

In the memory-based implementation, the initial

reading of the file takes up the bulk of the execution

time, with the exception of an increasing number of trees

(see Figures 3and 7). In that case, the reading time is

constant (due to the constant file size), regardless of the

number of trees, and the sorting time increases

proportional to the number of attributes, records, and

trees, as each has a similar impact on the number of

sorting operations required. Selecting the attributes to

examine takes very little time, as does performing the

split. Setting the split point, however, takes the majority

of the time (besides reading), mainly due to the sorting

that occurs so often.

In both implementations file input and output

operations take up most of the execution time. The only

exception is for the memory-based implementation with

an increasing number of trees, where the time taken to

read the file stays constant, and with over 25 trees,

reading the file does not take up most of the execution

time.

It is not valid to directly compare our file-based and

memory-based implementations quantitatively. While

the memory-based implementation has enough memory

to build the classifier successfully, it will always be

faster, due to less access to the file system (which is

considerably slower). Further, when the memory-based

implementation runs out of memory, and the file-based

version completes successfully, again, a comparison

cannot be made, in this case because one failed

completely. Therefore, an indirect comparison is

necessary.

To compare the two implementations we broke

them down into separately comparable components. One

aspect immediately visible is how setting the split point

scales. The file-based implementation scales very well,

while the computationally-heavy memory-based

implementation scales poorly, especially when the

number of trees increases (see Figure 7). On the other

hand, the file-based implementation scaled poorly in the

read-intensive attribute selection stage, while the

memory-based version performed well.

Table 1. Description of computing operation for file-based fast random forest implementation vs. memory-based

implementation.

Part of Process File-Based Fast Random Forest Memory-Based

Reading n/a reading the entire file into main memory

Sorting
reading the data file one line at a time and

writing lists sorted indices
sorting the data by a given attribute

Picking Attributes

picking the attributes to examine at each node in the

tree; reading lists of sorted indices for selected

attributes into main memory

picking the attributes to examine at each node in

the tree

Setting Split

Point

picking the best split criterion, based on sorted

indices and class attribute
picking the best split criterion

Performing Spilt
separating the remaining indices into new index

masks for each branch of the tree.

separating the remaining data into two subsets,

one for each branch.

87

Fig. 3. Running time for increased number of attributes: comparison of file-based fast random forest (left) and memory-based (right)

implementation with 100 records and 5 trees. The y-axis units are nanoseconds (ns).

Fig. 4. Running time for increased number of trees: comparison of file-based fast random forest (left) and memory-based (right) implementation

with 5,000 attributes and 200 records.

Fig. 2. Running time for increased number of records: comparison of file-based fast random forest (left) and memory-based (right)

implementation with 1,000 attributes and 5 trees.

88

Fig. 6. Distribution of total running time versus number of attributes: comparison of file-based fast random forest (left) and memory-based (right)

implementation with 100 records and 5 trees.

Fig. 7. Distribution of total running time versus number of trees: comparison of file-based fast random forest (left) and memory-based (right)

implementation with 5,000 attributes and 200 records. The units ns on the y-axis are the percentages of running time.

Fig. 5. Distribution of total running time for increased number of records: comparison of file-based fast random forest (left) and memory-based

(right) implementation with 1,000 attributes and 5 trees.

89

The algorithm was executed on larger input

data. For a data set with 30,000 attributes and 400

records, the file-based implementation of the

algorithm constructed 5 trees within 2 minutes and

1,000 trees within 34 minutes. For a larger data set

with 30,000 attributes and 800 records, the file-

based implementation built 5 trees and 1,000 trees

within 7 minutes and 140 minutes, respectively.

CONCLUSIONS

Random forest shows excellent predictive accuracy

for high dimensional genomic data but efficiency

and scalability are issues of concern. In this work

we addressed scalability by restricting our attention

to a classification problem for large microarray

datasets containing thousands of numeric gene

expression predictors. We presented a new

framework for scaling up random forest to larger

datasets. We described its design and its

performance. The fast random forest

implementation improved the learning time of the

algorithm without loss of accuracy, and it allowed

the classification to be performed on large disk

resident datasets. Experiments on gene expression

data have demonstrated its efficiency

Project home page

Optimized implementation of Random Forest in

Java is available for download at

www.colorectal.ccf.org/randomforest .

Acknowledgments

Part of this work was supported by NOIA Fund for Data

Mining.

References

1. Breiman L. Random forest. Machine Learning

2001; 45:5-32.

2. Bureau A., Dupuis J, Falls K, Lunetta KL,

Hayward B, Keith TP, Van Eerdewegh P.

Identifying SNPs predictive of phenotype using

random forests. Genetic Epidemiology 2005;

28:171-82.

3. Diaz-Uriarte R, Alvarez de Andres S. Gene

selection and classification of microarray data using

random forest. BMC Bioinformatics 2006; 7(3).

4. Garcia-Magarinos M, Lopez-de-Ullibarri I, Cao R,

Salas A. Evaluating the ability of tree-based

methods and logistic regression for the detection of

SNP-SNP interaction. Annals of Human Genetics

2009; 73(3):360-9.

5. Han P, Zhang X, Feng ZP. Predicting disordered

regions in proteins using the profiles of amino acid

indices. BMC Bioinformatics 2009; 10.

6. Kim BK, Lee WJ, Park PJ, Shin YS, Lee WY, Lee

KA, Ye S, et al. The multiplex bead array approach

to identifying serum biomarkers associated with

breast cancer. Breast Cancer Research 2009; 11(2).

7. Kumar KK, Pugalenthi G, Suganthan PN. DNA-

prot: Identification of DNA binding proteins from

protein sequence information using random forest.

Journal of Biomolecular Structure and Dynamics

2009; 26(6):679-86.

8. Lunetta KL, Hayward LB, Segal J, Van Eerdewegh

P. Screening large-scale association study data:

Exploiting interactions using random forests. BMC

Genetics 2004; 5(1):32.

9. Shi T, Seligson D, Belldegrun AS, Palotie A,

Horvath S. Tumor classification by tissue

microarray profiling: Random forest clustering

applied to renal cell carcinoma. Modern Pathology

2005; 18(4):547-57.

10. Breiman L. Random forest. Machine Learning

2001; 45(1):5-32.

11. Liaw A, Wiener M. Classification and regression

by random forest. Rnews 2002; 2:18-22.

12. Witten IH, Frank E. Data mining: Practical

machine learning tools and techniques. 2nd ed.

Morgan Kaufmann, San Francisco, CA. 2005.

13. Borisov A., Chikalov I, Eruhimov V, Tuv E.

Performance and scalability analysis of tree-based

models in large-scale data- mining. Intel

Technology Journal 2005; 9(02):143-50.

14. Mehta M, Agrawal R, Rissanen J. SLIQ: A fast

scalable classifier for data mining. In Proc. of

Extending Database Technology 1996; 1057:18-32.

15. Shafer J, Agrawal R, Mehta M. SPRINT: A

scalable parallel classifier for data mining. In Proc.

of Very Large Data Bases 1996; 544-55.

16. Gehrke J, Ramakrishnan R, Ganti V. RainForest:

A framework for fast decision tree construction of

large datasets. In Proc. of Very Large Data Bases

1998; 416-27.

90

17. Breiman L, Friedman J, Stone CJ, Olshen RA.

Classification and regression trees. Chapman Hall,

New York. 1984.

18. Jiang Y, Casey G, Lavery IC, Zhang Y, Talantov

D, Martin-McGreevy M, Skacel M, Manilich E,

Mazumder A, Atkins D, Delaney CP, Wang Y.

Development of a clinically feasible molecular

assay to predict recurrence of stage II colon cancer.

J Mol Diagn. 2008; 10(4):346-54.

91

