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Random forest is an ensemble classification algorithm.  It performs well when most predictive variables are noisy  and can be used 

when the number of variables is much larger than the number of observations. The use of bootstrap samples and restricted subsets of 

attributes makes it more powerful than simple ensembles of trees.  The main advantage of a random forest classifier is its explanatory 

power: it measures variable importance or impact of each factor on a predicted class label. These characteristics make the algorithm 

ideal for microarray data. It was shown to build models with high accuracy when tested on high dimensional microarray data sets. 

Current implementations of random forest in the machine learning and statistics community, however, limit its usability for mining over 

large datasets as they require that the entire dataset remains permanently in memory. We propose a new framework, an optimized 

implementation of a random forest classifier, which addresses specific properties of microarray data, takes computational complexity of 

a decision tree algorithm into consideration, and shows excellent computing performance while preserving predictive accuracy. The 

implementation is based on reducing overlapping computations and eliminating dependency on the size of main memory. The  

implementation’s excellent computational performance makes the algorithm useful for interactive data analyses and data mining.   
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1.   INTRODUCTION 

The fact that microarrays allow investigations of 

thousands of genes at the same time is an   advantage 

from a data generation perspective, but a challenge from 

a data analysis perspective. Analyses of microarray data 

pose a challenge due to the extremely large number of 

predictors, their possible interactions,  and the 

comparatively small number of samples. As a result, 

classical statistical techniques cannot be applied directly 

to microarray datasets and novel methods are necessary. 

Random forest is one such method.  

Random forest is a classification ensemble 

algorithm developed by Leo Breiman that uses multiple 

binary decision trees. Each of the classification trees is 

built using a sample of data and at each node a randomly 

chosen set of variables is considered for the best split.
1
 

Random forest has become a major data analysis tool. It 

has been applied to large-scale tissue microarray data 

and genome-wide association studies for complex 

diseases. 
2-9 

The random forest algorithm is suitable for 

microarray data mining for several reasons. Firstly, 

classification trees are non-parametric and do not make 

any assumptions about the underlying distribution. 

Second, it performs excellently even when most of the 

predictive variables are noisy. Third, it can be used 

when the number of variables is much larger than the 

number of observations. And lastly, it returns measures 

of variable importance that can be used for gene 

selection.
 1
 

The accuracy of random forest is comparable or 

superior to alternative state-of-the-art microarray data- 
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based prediction methods.
3
 Comprehensive evaluation 

of random forest applications to real microarray data 

classification problems have shown high predictive 

accuracy.
3,4,9

 This evaluation included an assessment of 

the effects of changes in the parameters of random forest 

on its classification performance. Changes in the two 

important parameters, the number of input variables 

selected at each split and the number of trees in a forest, 

have negligible effects, i.e. the algorithm is robust to the 

extent that there is no need to fine-tune default 

parameters or pre-select variables. 

2.   EXISTING RANDOM FOREST 

FRAMEWORKS 

High quality random forest implementations include : 

the original Fortran code from L. Breiman and A. 

Cutler, the R package  port of this code, 

randomForest by A. Liaw and M. Wiener (this code 

is available through the Comprehensive R Archive 

Network, CRAN), and Weka, a collection of machine 

learning algorithms for data mining tasks implemented 

in Java.
10-12

  A problem with each of these frameworks, 

however, is that their applications to large microarray 

datasets are limited due to high computational 

requirements.  

Performance and scalability have not been the 

primary design objectives of the presently available 

frameworks; instead, their emphasis has been on the 

accuracy of the implementation.  Efficiency and 

scalability are major issues of concern when random 

forest is applied to very large datasets. The existing 

implementations mentioned above require that the entire 

training data remains permanently in main memory and 

this limits their usability.  

In response to this limitation, preprocessing steps 

that reduce the dimensionality of the data have been 

applied to large datasets before  their submission to the 

random forest algorithm. The process of variable 

reduction has, however, drawbacks that include changes 

of the resulting classification model, reduced accuracy, 

and loss of the potentially useful and interesting 

prediction variables.  Thus, it is important to understand 

the computational complexity of random forest, 

investigate the use of the algorithm for classification of 

large microarray datasets, and provide a scalable version 

of random forest that produces exactly the same 

decision trees. 

3.   DECISION TREE CLASSIFIERS 

In this section, we discuss computational resources 

required by random forest and examine previously 

known scalable algorithms for construction of 

classification trees.  

3.1.   Computational resources 

 Algorithms used to construct ensembles of 

classification trees can be characterized by their 

computational complexity,  the distribution of execution 

times of specific operations, and identification of 

operations that are the most  computationally 

expensive.
13 

Algorithm learning times are dominated by two 

operations: 1) the sorting of training data on each 

candidate variable selected for the split and, to a lesser 

extent, 2) the random selection of sample and variable 

subsets. At every step, a classification tree uses 

exhaustive search of all possible combinations of 

variables and split points to achieve the global minimum 

in impurity. To select the best splitting variable, the 

algorithm requires sequential access to all numeric 

variables in sorted order. The procedure of sorting 

requires many comparisons and the procedure of 

sampling requires intensive memory access. 

Respectively, these operations consume approximately 

60% and 20% of of the execution time. 

3.2.   Previous work in the database 

literature 

Several software frameworks have addressed scalability 

requirements of tree construction algorithms without 

modifying the result. SLIQ, one of the first decision tree 

algorithms for large datasets, uses a technique where 

after presorting the sort order is maintained in the tree 

growth phase to avoid resorting and to reduce the cost of 

numeric variable evaluations.
14

 SLIQ separates the input 

dataset into attribute lists at the beginning of the 

algorithm and it thus requires an in-memory data 

structure that grows linearly with the number of records 

in the training dataset.  

A second framework, SPRINT, removes the in-

memory requirement of SLIQ and instead proposes a 

new data model that runs with a minimal amount of 

main memory.
15

 Similar to SLIQ, SPRINT also 

minimizes sorting by creating a sorted attribute lists at 

the beginning of the algorithm, but it uses a different 
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data structure wherein the initial sorted attributes lists 

are associated with the root of the classification tree and 

as trees grow, the attribute lists are partitioned and 

distributed among children. The costly operation here is 

the distribution of attribute lists at each node of the 

decision tree.  This operation involves significant 

rewriting of the disk resident dataset with large numbers 

of attributes and it also triples the size of the training 

dataset.   

As a third framework, RainForest can  be viewed as 

an optimized version of  SPRINT.
16

 The optimization is 

based on the observation that the distribution of distinct 

class values for each predictor variable contains 

sufficient statistics to evaluate all possible split points. 

RainForest proposes a new structure, a set of aggregate 

lists of all predictor variables, that can be viewed as a 

compressed version of attribute lists used in SPRINT. 

For categorical variables, this structure is proportional 

to the number of distinct values of predictor variables 

and is highly likely to fit in main memory; the reduced 

main memory requirements lead to significant 

performance improvements over SPRINT for datasets 

with categorical variables. For continues numeric 

variables, however, the size of the required in-memory 

data structure will again be equal to that of an attribute 

list in SPRINT. Thus, to take advantage of RainForest, 

numeric variables have to be discretized, and that may 

impact the classification results.  

SPRINT and RainForest are the fastest scalable 

classification tree construction algorithms proposed 

previously that focus on scalability issues and which do 

not modify results of a classification method. The main 

contribution of this paper is a scalable random forest 

framework for high dimensional real valued datasets 

(e.g. microarray data), also with no adverse impact on 

the quality of the classification model. 

 

4.   FAST RANDOM FOREST                                                        

 

In this section, we introduce a framework that results in 

a scalable random forest algorithm and we discuss how 

it encompasses previous work. The emphasis of this 

work is a fast implementation of the algorithm for 

microarray datasets that are too large to fit in memory. 

The goal here is to speed up the tree growth phase, as 

this is the most computationally expensive component of 

the algorithm. Observations of the nature of microarray 

data enable significant computational saving. 

4.1.   Algorithm description 

Random forest builds an ensemble of classification 

trees. Each of the classification trees is built using a 

bootstrap sample of the data, and at each node of the 

tree a random subset of the variables is examined for the 

best split. The algorithm uses the impurity-based Gini 

index as an attribute selection measure used to assess the 

splitting criterion.
17 

To evaluate the impurity function 

and decide how to split a node based on a numeric 

attribute, the algorithm requires access to each randomly 

selected attribute in sorted order. The number of 

searches for the best split point is proportional to the 

number of samples and attributes in the training dataset. 

Note that each randomly selected attribute is examined 

independent of the other predictor attributes.  

The proposed fast random forest algorithm avoids 

repeated sorting. It uses a one-time sort and separate 

lists for each predictor attribute. The pre-processing step 

of one-time sorting reduces the computational burden at 

each node. The algorithm makes one scan over the 

dataset and constructs a list of sorted indices for each 

predictor attribute in the dataset. Entries into a list of 

sorted indices contain record identifiers of the training 

dataset sorted by the value of the corresponding 

attribute. Unlike usual sorting methods, which store the 

sorted values, our algorithm stores the original indices 

of the sorted records instead. Additionally, a class list of 

length equal to the number of records is used to 

reference a class label of each record and a pointer to a 

leaf node of the classification tree. At the beginning of 

the tree construction process, pointers for records 

included in a bootstrap sample are initially contained in 

the root node.  

Due to the nature of a typical microarray dataset 

with a relatively small number of samples, we assume 

that a class list and at least one list of sorted indices 

always fit into main memory. Lists of sorted indices of 

each predictor attribute are needed in main memory, one 

at a time, to be given as arguments to the Gini 

coefficient function as a metric of impurity.  
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 R1  R2  R3  R4  R5  ...  

Gene 1  5.513  8.576  10.523  9.717 12.533 ...  

Gene 2  4.025  11.015  10.169  7.651 12.058 ...  

Gene 3  7.636  11.914  10.802  12.043  9.889 ...  

Gene 4  11.769  12.428  10.974  9.889 4.774 ...  

...  ...  ...  ...  ...  ...  ...  

Class  1  2  1  1  2  ...   

 

Gene 1  1  -2  4  -3  5  ...  

Gene 2  1  -4  3  -2  5  ...  

Gene 3  1  -5  3  -2  4  ...  

Gene 4  5  -4  3  -1  2  ...  

...  ...  ...  ...  ...  ...  ...  

 

Fig. 1. Sample dataset and corresponding lists of sorted indices. The 

gene expression levels in the top row are representative of robust 

multi-chip analyses (RMA) wherein units are on a log2 scale.   

 

Calculation of the Gini index is based on the 

relative frequency, or distribution, of class labels and 

does not require access to actual values. Note that a list 

of sorted indices and a class list have all the necessary 

information to calculate the Gini index. However, one 

subtle refinement to our implementation has to be taken 

into consideration as the split point is evaluated at the 

midpoint between consecutive distinct data values. 

Thus, the Gini index will not be evaluated if values 

corresponding to the two adjacent sorted indices are 

equal. This requirement is not naturally fulfilled by a list 

of sorted indices as an index of the original value cannot 

be used to determine if two adjacent values are equal. 

To overcome this limitation, we implemented the 

following adjustment. Each index is incremented by one 

and represented in a form of positive non-zero integers. 

Thereafter, the sign of each index is adjusted to reflect 

changes in the value. If the two adjacent values are 

equal, the sign will remain the same; otherwise, the sign 

will change. As a result of this, changes or lack thereof 

in the values can be detected. Figure 1 represents a 

sample dataset and corresponding lists of sorted indices 

as input to the fast random forest algorithm (Algorithm 

1). 

  

4.2.   Discussion 

Our implementation of random forest employs a 

decision tree algorithm that adopts a middle ground 

between SLIQ and SPRINT, the fastest previously 

proposed scalable classification tree construction 

algorithms for datasets with continuous numeric values.  

Similar to SLIQ and SPRINT, the algorithm avoids 

sorting at each node by using pre-sorting techniques. 

The main difference between previously described 

scalable decision tree algorithms and the proposed 

implementation is the use of a novel data structure, a list 

of sorted indices.  

Fast random forest is based on the observation that 

a list of sorted indices for each predictor attribute and a 

class list contain sufficient statistics to calculate the Gini 

index and select the best split point. The fast random 

forest algorithm requires a minimal amount of memory 

equal to the size of a list of sorted indices and a class 

list. The algorithm offers significant performance 

improvement over SPRINT for datasets with large 

numbers of attributes. Firstly, it does not triple the size 

of the training dataset and, therefore, utilizes main 

memory more efficiently. And secondly, it does not 

require a costly operation to partition and distribute 

attribute lists among children.  

85



        

The critical difference of our data model is that 

entries into a list of sorted indices contain record 

identifiers only. Thus, the algorithm makes more 

efficient use of available memory. For most microarray 

datasets, we expect that a randomly selected set of 

sorted indices at each node of the tree will fit in main 

memory. The assumption that a set of sorted indices of 

the root node fits in memory does not imply that the 

complete dataset fits in memory, since random forest 

selects a random subset of attributes at each node. If not, 

it is highly likely that at least a list of sorted indices of 

each individual predictor attribute can fit in main 

memory.    

5.   EXPERIMENTAL RESULTS 

The gap between the size of real-life datasets and 

scalability of available data-mining applications that 

implement the random forest classifier is especially 

visible when analyzing microarray data.  Both the Weka 

software framework and the R package randomForest 

failed to process a dataset with 200 samples and 20,000 

gene probes. 

The scalable and fast implementation of random 

forest was used to look for differences between the 

genomes of patients with a recurrent colon cancer and 

those without. This method allowed us to find genetic 

markers that were previously not correlated with 

colorectal cancers.
 18

 

As part of the algorithm testing, both our memory-

based and fast file-based implementations of the random 

forest algorithm were timed. The tests were run on an 

Intel Core 2 Duo E6550 CPU (2.33 GHz), with 1.95 GB 

of RAM. The operating environment was an unmodified 

Java 6 SE (update 16) environment running under 

Windows XP SP3.  

A  comparison of our memory- and fast file-based 

implementations of the random forest algorithm is 

provided in Table 1 to highlight the origin of the 

excellent performance and scalability of fast random 

forest. Our new implementation not only makes it 

possible to analyze large microarray datasets on 

personal computers, but it also makes the algorithm 

available for efficient and interactive data analyses. 

As expected, the memory-based implementation is 

much faster for small data sets. For large datasets (e.g. 

 

Algorithm 1.  Fast random forest induction schema and optimization. 

 

Input: matrix W s × g, with s samples and g genes, number of trees nTrees 

Output: ensemble of nTrees classification trees  

Preprocessing (sorting):  

1.  Create g lists of sorted indices.  

2.  Increment each index by 1.  

3.  Run through values, changing sign of the index if adjacent values are not equal  

4.  Write each list of sorted indices to a new line in the sort file.  

5.  Index files: write byte offsets for each line in the data and sort files.  

BuildForest(sample W): 

    for ( i = 1 , i <=  nTrees, i ++ ) 

       BuildTree(I) 

   end for  

BuildTree(sample W): 

    if (class list is homogeneous)  

        #branch complete 

        Save outcome as leaf node. 

    else 

        Pick a subset g' consisting of  attributes to examine. 

        FindBestSplit(g') using the Gini coefficient. 

        Read line corresponding to the split attribute from data file into memory. 

        Use split value to partition records into W'1 and W'2  

           BuildTree(W'1) 

        BuildTree(W'2) 

    end if  

FindBestSplit(attributes g'): 

    for ( each attribute in g') 

        for ( j = 2 , j <= s , j++ ) 

             if (sign of (j - 1)th sorted index == sign of (j)th sorted index) 

                  skip to next iteration 

             else 

                  calculate Gini index 

             end if 

        end for 

    end for 

    select best split criterion based on Gini index  
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20,000 attributes and 1,000 records), however, the 

memory-based implementation will run out of memory, 

while the file-based implementation will successfully 

generate the given number of trees.  

In the file-based implementation, increasing the 

number of records and number of trees has a large 

impact on performance, as both increase the total 

number of sorted indices that need to be read from the 

sort file (Figures 2-7). The file read/write operations 

take up the biggest chunk of time, with the exception of 

sorting with large numbers of trees (see Figure 7). In this 

case, the sorting time will remain constant and take up 

an increasingly smaller percentage of time as the number 

of trees increases. The other file-intensive operation is 

picking the attributes to examine, as the selected 

attributes' sorted indices must be read into memory from 

the sort file each time. This is the single most expensive 

operation in the entire process (see Figures 5-7). Due to 

the special way the sorted indices are modified before 

storage, setting the split point requires no interaction 

with the file system and takes up a very small portion of 

execution time. Performing the split, on the other hand, 

does require reading the data file, but only one line. 

Thus, it does not take up a very large portion of the 

execution time.  

In the memory-based implementation, the initial 

reading of the file takes up the bulk of the execution 

time, with the exception of an increasing number of trees 

(see Figures 3and 7). In that case, the reading time is 

constant (due to the constant file size), regardless of the 

number of trees,  and the sorting time increases 

proportional to the number of attributes, records, and 

trees, as each has a similar impact on the number of 

sorting operations required. Selecting the attributes to 

examine takes very little time, as does performing the 

split. Setting the split point, however, takes the majority 

of the time (besides reading), mainly due to the sorting 

that occurs so often. 

In both implementations file input and output 

operations take up most of the execution time. The only 

exception is for the memory-based implementation with 

an increasing number of trees, where the time taken to 

read the file stays constant, and with over 25 trees, 

reading the file does not take up most of the execution 

time. 

It is not valid to directly compare our file-based and 

memory-based implementations quantitatively. While 

the memory-based implementation has enough memory 

to build the classifier successfully, it will always be 

faster, due to less access to the file system (which is 

considerably slower). Further, when the memory-based 

implementation runs out of memory, and the file-based 

version completes successfully, again, a comparison 

cannot be made, in this case because one failed 

completely. Therefore, an indirect comparison is 

necessary. 

To compare the two implementations we broke 

them down into separately comparable components. One 

aspect immediately visible is how setting the split point 

scales. The file-based implementation scales very well, 

while the computationally-heavy memory-based 

implementation scales poorly, especially when the 

number of trees increases (see Figure 7). On the other 

hand, the file-based implementation scaled poorly in the 

read-intensive attribute selection stage, while the 

memory-based version performed well. 

Table 1.  Description of computing operation for file-based fast random forest implementation vs. memory-based 

implementation. 

 

Part of Process  File-Based Fast Random Forest   Memory-Based   

Reading  n/a  reading the entire file into main memory  

Sorting  
reading the data file one line at a time and 

writing lists sorted indices  
sorting the data by a given attribute  

Picking Attributes  

picking the attributes to examine at each node in the 

tree; reading lists of sorted indices for selected 

attributes into main memory  

picking the attributes to examine at each node in 

the tree  

Setting Split 

Point  

picking the best split criterion, based on sorted 

indices and class attribute  
picking the best split criterion  

Performing Spilt  
separating the remaining indices into new index 

masks for each branch of the tree.  

separating the remaining data into two subsets, 

one for each branch.  
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Fig. 3.  Running time for increased number of attributes: comparison of file-based fast random forest (left) and memory-based (right)  

implementation with 100 records and 5 trees. The y-axis units are nanoseconds (ns).  

 

 
Fig. 4.  Running time for increased number of trees: comparison of file-based fast random forest (left) and memory-based (right)  implementation 

with 5,000 attributes and 200 records. 

 

 
 

Fig. 2.  Running time for increased number of records: comparison of file-based fast random forest (left) and memory-based (right) 

implementation with 1,000 attributes and 5 trees. 
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Fig. 6.  Distribution of total running time versus number of attributes: comparison of file-based fast random forest (left) and memory-based (right) 

implementation with 100 records and 5 trees. 

 

 
 

Fig. 7.  Distribution of total running time versus number of trees: comparison of file-based fast random forest (left) and memory-based (right) 

implementation with 5,000 attributes and 200 records. The units ns on the y-axis are the percentages of running time. 

 

 
 

Fig. 5.  Distribution of total running time for increased number of records: comparison of file-based fast random forest  (left) and memory-based 

(right) implementation with 1,000 attributes and 5 trees. 
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The algorithm was executed on larger input 

data. For a data set with 30,000 attributes and 400 

records, the file-based implementation of the 

algorithm constructed 5 trees within 2 minutes and 

1,000 trees within 34 minutes.   For a larger data set 

with 30,000 attributes and 800 records, the file-

based implementation built 5 trees and 1,000 trees 

within 7 minutes and 140 minutes, respectively.  

CONCLUSIONS                                                       

Random forest shows excellent predictive accuracy 

for high dimensional genomic data but efficiency 

and scalability are issues of concern. In this work 

we addressed scalability by restricting our attention 

to a classification problem for large microarray 

datasets containing thousands of numeric gene 

expression predictors. We presented a new 

framework for scaling up random forest to larger 

datasets. We described its design and its 

performance. The fast random forest 

implementation improved the learning time of the 

algorithm without loss of accuracy, and it allowed 

the classification to be performed on large disk 

resident datasets. Experiments on gene expression 

data have demonstrated its efficiency 

Project home page 

Optimized implementation of Random Forest in 

Java is available for download at 

www.colorectal.ccf.org/randomforest .  
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