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New high-throughput sequencing technologies can generate millions of short sequences in a single experiment. As the size of the data 

increases, comparison of multiple experiments on different cell lines under different experimental conditions becomes a big challenge. 

In this paper, we investigate ways to compare multiple ChIP-seq experiments. We specifically studied epigenetic regulation of breast 

cancer and the effect of estrogen using 50 ChIP-seq data from Illumina Genome Analizer II. First, we evaluate the correlation among 

different experiments focusing on total number of reads in transcribed regions of the genome. Then, we adopt the method that is used to 

identify most stable genes in RT-PCR experiments to understand background signal across all experiments and to identify most variably 

transcribed regions of the genome. Gene ontology and function enrichment analysis on the 100 most variable genes demonstrate the 

biological relevance of the results. In this study, we present a method can effectively select diferentially transcribed regions based on 

protein binding profiles over multiple experiments using real data points without any normalization among the samples. 

1.   INTRODUCTION 

 During the past three years, with the rapid advancement 

in the next generation sequencing (NGS) technology, 

and related techniques such as chromatin 

immunoprecipitation (ChIP), researchers can investigate 

the protein-DNA binding relationship at high resolution 

using the ChIP-seq method. In a recent study, we have 

generated a large collection of ChIP-seq data for 

different cell lines and samples as well as for different 

proteins. The goal of this study is to understand the 

epigenetic regulation of breast cancer and the effect of 

estrogen. So far we have generated 46 lanes of ChIP-seq 

data from the Illumina Genome Analyzer II (GAII) for 

five different proteins in eight different samples 

(including the same samples under different conditions) 

with a total of more than 11 giga bases. The proteins 

include RNA polymerase II (Pol II), estrogen receptor α 

(ERα), and epigenetic markers including H3K4-

dimethylation (H3K4me2), H3K9-dimethylation 

(H3K9me2), and H3K27-trimethylation (H3K27me3). 

The accumulation of this large amount of data 

brings up an important question. How can we explore 

the difference of protein binding profiles among 

different cell types and multiple proteins. In another 

words, can we identify the genes with significantly 

different binding profiles for multiple proteins and cell 

types to differentiate different samples? To answer this 

questions, usually we need to develop effective 

comparison method such as data normalization between 

the data. However, since the data were generated from 

samples with distinctively different phenotypes and 

different proteins, normalization is not feasible or even 

meaningful. Instead, we need to resort to other 

approaches. In this paper, we adopted methods 

previously used for gene expression analysis in 

microarray and quantitative real-time PCR (qPCR) 

experiment. We first establish the similarity among 

different ChIP-seq experiments using well annotated 

genes. Then we further apply a feature selection method 

to pick genes that show differentiated protein binding 

profiles across multiple samples. 

An advantage of this method is that it circumvented 

the process of normalization among the samples and is 

robust to experimental variations. Our results paved the 

way to carry out a whole genome screening in the future 

work. 

2.   METHODS 

2.1.   Dataset 

ChIP-sequencing experiments are conducted on ten 

different samples with five different pull down proteins. 

Table 1 summarizes the types of samples and cell lines 

and pull down proteins. The samples include 

mammosphere from human breast cancer tissue, 

MCF10A (a non-tumerigenic human mammary 

epithelial cell line), MCF7 (a human breast cancer 

epithelial cell line), OHT (a taxmoifen resistant cell line 
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derived from MCF7). In addition, we also have data for 

two hepatoma (liver cancer) cell lines PLC5 and Huh7.  

The treatments on the samples include AKT gene 

knockout (in MCF10A), application of E2 (also known 

as17-Estradial, to mammosphere and MCF7 and OHT 

cell lines). For each sample, ChIP-seq experiments 

focusing on different proteins have been carried out. The 

proteins include RNA polymerase II (Pol II), estrogen 

receptor α (ERα), and epigenetic markers including 

H3K4-dimethylation (H3K4me2), H3K9-dimethylation 

(H3K9me2), and H3K27-trimethylation (H3K27me3). 

We used Illumina's Eland mapping algorithm to 

map sequence reads to Human reference genome hg18. 

We extracted transcribed region coordinates from 

RefGene database (1). For every experiment total 

number of sequence reads that are mapped to a gene 

region (as defined in RefGene) is counted. Here we will 

refer to total number sequence reads in a gene region as 

gene count. 

2.2.   Comparison of multiple ChIP-seq 

experiments 

When the samples are clustered based on these gene 

counts, we observed that pull down protein and the 

sample type drives the clustering. Fig. 1 shows the 

heatmap of sample clustering based on all gene counts. 

This analysis demonstrate that gene count profiles of the 

experiments with same pull down protein on different 

samples or same samples with different treatment 

options are very similar. On the other hand, gene count 

profiles of experiments with certain pull down proteins 

are very different. For example, correlation between 

experiments with H3K9 Me2 and H3K27 Me3, H3K9 

Me2 and ER are very strong, while correlation between 

experiments with Pol II and H3K27 Me3, and Pol II and 

H3K9 Me2 are very poor.    

2.3.   Select gene features based on 

protein binding profiles over 

multiple samples 

Since these experiments are done on different cell lines 

and with different pull down proteins, background signal 

is not uniform across these experiments. We need a 

method to describe background variation across all 

experiments. 

Vandesompele et al (2002) introduced a gene 

stability measure to indentify most stably expressed 

control genes in RT-PCR experiments. They defined 

gene stability measure M as the average pairwise 

variation between any particular gene and all other 

genes. Variation between two genes is calculated as 

standard deviation of log-transformed gene expression 

ratios. A small M value means expression of this gene is 

quite stable across all samples, while a large M value 

means this gene varies a lot across all samples (2).  

Table 1. Total of 50 ChIP-sequencing experiments are done on 10 different samples with 5 pull 

down proteins. 

 

Samples 

Protein Total Number 

of Lanes from 

Illumina GAII 
Pol 

II 
ERα H3K4me2 H3K9me2 H3K27me3 

mammosphere 2 1 
   

3 

mammosphere+E2 2 1 
   

3 

MCF10A w/ AKT 

knockout    
4 2 6 

MCF10A 
   

4 2 6 

MCF7 2 2 2 4 
 

10 

MCF7+E2 2 2 
   

4 

OHT 2 2 2 
 

4 10 

OHT+E2 2 2 
   

4 

PLC5 
    

2 2 

Huh7 
    

2 2 

Total 12 10 4 12 12 50 
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We adopted this method to determine least stable 

transcribed regions across all experiments as opposed to 

the original intent of the method to identify stable 

controls. When the transcribed regions were ranked by 

their M values, the small M values indicate the 

transcribed regions that do not vary in the samples or in 

response to experimental treatment in our 50 ChIP-

sequencing experiments. This helped us to understand 

background variation and determine most variable 

regions across all experiments. 

Out of n genes in total, for every combination of 

two genes j and k and in experiment i, log2-transformed 

ratios of gene counts gij and gik are calculated. Array Gjk 

of m elements consists of these ratios across m 

experiments (Eq.1). Pairwise variation is calculated as 

the standard deviation of the Gjk elements (Eq. 2). The 

gene-stability measure Mj for a gene j is defined as the 

mean of all pairwise variations, Sjk (Eq.3). 

 

 

 
 

Fig. 1.  Heatmap of sample clusering based on correlation of gene counts. Pearson correlation coefficient is calculated for every sample pair 

using read counts for 14,461 genes. 
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Out of 20,998 genes (transcribed regions) listed in 

RefGene database, we selected 14,461 genes that have 

50 or more sequence reads on them at least in one of the 

experiments. Then we calculated M values for these 

14,461 genes. We implemented M value calculations in 

R statistical data analysis language. Calculations are 

done on the computing cluster that consists of 72 

computing nodes with dual quad core AMD Opteron 

2378 processors. We submitted 145 jobs simultaneously 

(~100 genes per job) and each job is completed in 5 

hours 48 minutes. Based on this timing, M value 

calculations for 14,461 genes would take about 35 days 

on a single processor. 

3.   RESULTS 

3.1.   Calculation of M values 

First, we investigate the range of M value and its 

indications. Fig. 2 shows the histogram of M values for 

14,461 genes. M values range between 1 and 2.8, and it 

is less than 2 for 96% of the genes. This indicates that 

there is a background pattern that most of the genes 

follow. Small M value means counts for this gene is 

quite stable across all experiments. On the other hand, 

large M value means counts for this gene is quite 

different than the background pattern. 

 

 
Fig. 2. Histogram of the M values of 14,461 transcribed regions of 

RefGene database across 50 ChIP-sequencing experiments. 

 

3.2.   Gene ontology and function 

enrichment analysis  

In this study we selected top 100 genes as the most 

variable genes across all experiments (See appendix for 

the gene list). Counts for these genes are used to cluster 

genes and experiments. The heatmap in Fig. 3 shows 

clustering of these top 100 most variable genes across 

50 experiments. 

We performed functional analysis on the most 

variable 100 genes across 50 ChIP-seq experiments 

using Ingenuity Pathway Analysis (IPA) (3). Top 

functional groups are identified as cellular development, 

protein synthesis, gene expression, tissue development, 

RNA damage and repair, cancer, cellular growth and 

proliferation, cell cycle and breast cancer. Table 2 lists 

the IPA function and disease annotations, associated p-

values (right-tailed Fisher's exact test) and total number 

of genes in that category. 

 

 

4.   CONCLUSION AND DISCUSSION 

There are number of normalization methods introduced 

to compare pairs of sequencing experiments or series of 

same type of sequencing experiments (4-9). However, it 

is not feasible to apply these methods to compare tens, 

hundreds of sequencing experiments that conducted on 

different samples with different pull down proteins since 

the assumption on the same background level and noise 

model does not hold for different proteins. Our method 

provides a means to integrate ChIP-seq data from 

multiple experiments with different proteins, which can 

be of great importance in characterizing the regulome of 

the cells. 

We observed that sample type and pull down 

protein are the major factors that determine the whole 

genome profile of the ChIP-seq datasets. As shown in 

Fig. 1, experiments are tightly clustered by protein 

and/or sample type. For example, two hepatoma cell 

lines PLC5 and Huh7 are clustered with a non-

tumerigenic human mammary epithelial cell line 

MCF10A with H3K27me3 epigenetic marker. In this 

case, H3K27me3 determines the background signal. On 

the other hand, human epithelial cell lines of MCF7 

(breast cancer) and MCF10A (non-tumerienic 

mammary) do not cluster by H3K9me3 but tightly 
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cluster by sample cell line. These observations confirms 

that whole genome profile of different samples and 

proteins are not the same. Therefore, we need a method 

to compare multiple ChIP-seq datasets without changing 

the observed data. 

In this study, we introduced a new method to 

compare multiple ChIP-seq experiments without 

normalization. For every gene we calculated average 

pairwise variation between itself and all other genes as 

the stability measure, M value. By ranking all of the 

genes by M values, we identified the 100 most variable 

genes across 50 ChIP-seq experiments. 

The functional and disease enrichment analyses on 

these 100 genes demonstrate the biological relevance of 

the results. First, most of the samples are from cancer 

cell lines or samples and our gene list confirms this fact 

with several cancer related functional groups being 

highly enriched such as carcinoma (35 genes) and breast 

cancer (23 genes). Second, most of the cell types in this 

study are epithelial cells and the most enriched 

functional term from IPA analysis is related to the 

developmental process of the epithelial cells. Thirdly, 

the samples contain two different tissues – breast tissue 

(MCF7, MCF10A, mammosphere, OHT) and liver 

tissue (PLC5 and Huh7). Out of the 100 genes, 7 of 

 

 
 

Fig. 3.  Clustering of top 100 most variable genes and 50 ChIP-sequencing experiments. The distance function for hierarchical clustering is           

1-correlation. Colors along the columns indicate 5 pull down proteins. 
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them are identified as liver morphology genes, which 

implies that these genes can be applied to differentiate 

the two tissues. In addition to these functional groups 

that confirms our expectation on the cancer related 

samples, several other terms may also lead to more 

biological insight. For instance, two functional groups 

are related to fibroblasts (ie. interphase of fibroblasts, 

cell death of fibroblast cell lines). Given the complicated 

roles of fibroblast in cancer development and its 

existence in mammosphere samples, we can explore 

more about the roles of the fibroblast cell division and 

death genes in the different cancer stage. In addition, the 

18 genes related to the formation of pulmonary artery 

may also be related to the angiogenesis process in 

regular tumor development and tumor 

microenvironment component interactions. 

This approach can also be used to evaluate the 

quality of series of experiments. For example, MCF7 

and OHT samples for ERα protein do not cluster with 

the mammosphere samples for the same protein. For 

these particular samples we know that MCF7 and OHT 

samples for ERα  protein had some problems in sample 

preparation.  

As a conclusion, we introduced a method to 

effectively compare multiple ChIP-seq experiments 

without changing the real observations. The proposed 

method does not require normality or homogeneity of 

variance for the data points (2). We identified least 

stable gene regions across large set of experiments using 

the stability measure M. The presented results confirm 

the feasibility of the method and necessitates whole 

genome screening as the future work. 

 

 

 
Table 2.  IPA function and disease annotation terms associated with the top 20 with functional 

categories (replicated terms are removed, 17 terms are left). 

 

IPA Function/Disease Annotation p-value # Genes 

developmental process of epithelial cells 1.06E-09 26 

synthesis of protein 8.49E-09 16 

transcription of DNA 3.03E-06 26 

developmental process of tissue 3.90E-06 19 

catabolism of mRNA 3.92E-06 4 

Carcinoma 6.57E-06 35 

proliferation of connective tissue cells 8.33E-06 20 

interphase of fibroblasts 9.28E-06 16 

breast cancer 9.61E-06 23 

Dermatitis 1.47E-05 9 

cell death of fibroblast cell lines 1.55E-05 32 

formation of pulmonary artery 2.46E-05 8 

cytolysis of trophoblast giant cells 2.46E-05 16 

tumorigenesis of large-cell diffuse 

lymphoma 
2.46E-05 11 

formation of pulmonary artery 2.46E-05 18 

quantity of endometrial cancer cell lines 2.46E-05 6 

morphology of liver 3.30E-05 7 
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Appendix 

List of 100 most variable genes:  

MALAT1, CLDN4, KRT19, TXNIP, SNHG1, ACTG1, 

ZFP36L1, BRD2, RPS2, SLC38A2, PRMT6, 

DKFZP686I15217, FOXH1, RPL10, ATF4, 

HIST1H1C, RAB26, NPPC, EEF1A1, TWIST1, 

ZNF580, HEXIM1, GADD45B, TUBD1, HSPA1A, 

RPLP0, C11orf83, JMJD8, EIF4A2, JUN, MRPL41, 

JUNB, LTB, TNFRSF12A, PSMD6, AREG, FLJ11235, 

GAS5, HOXD8, PARD6B, RPRML, TLCD1, HES7, 

RPL12, RPL13, H2AFZ, MYL6, MRPS34, BRIP1, 

ZFP36, SNHG8, C17orf82, ZNF217, 

DKFZp779M0652, RNFT1, KRT18, SNHG5, HES1, 

NCRNA00173, RPL27A, ZFP36L2, IER5L, MCM7, 

NEAT1, HLA-H, PNRC2, HIST2H2AC, HAGHL, 

DDIT4, RPL41, TBX2, XBP1, CDKN2BAS, IER5, 

FOXA1, S100A11, CDKN2A, CDK5R2, PROKR2, 

HIST1H2AE, APRT, PPAN-P2RY11, SFRS2, 

C11orf48, TMEM107, IER2, HIST1H1B, VGF, 

HIST2H2BE, PHPT1, HIST1H3B, HIST1H2AM, 

RPS6KB1, MFSD3, NOG, MIDN, HIST1H3D, MYC, 

NEUROD2, C10orf114. 
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