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Kinship analysis using genetic data is important for many biological applications, including many in conservation biol-
ogy. Wide availability of microsatellites has boosted studies in wild populations that rely on the knowledge of kinship,
particularly sibling relationships (sibship). While there exist many methods for reconstructing sibling relationships,
almost none account for errors and mutations in microsatellite data, which are prevalent and affect the quality of
reconstruction. We present an error-tolerant method for reconstructing sibling relationships based on the concept of
consensus methods. We test our approach on both real and simulated data, with both pre-existing and introduced
errors. Our method is highly accurate on almost all simulations, giving over 90% accuracy in most cases. Ours is the
first method designed to tolerate errors while making no assumptions about the population or the sampling.
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1. INTRODUCTION

Kinship analysis of wild populations is an im-
portant and necessary component of study-
ing mating systems, dispersal patterns and
kin selection. In wild populations, kin-
ship relationships (lower order pedigree) are
typically inferred from microsatellite mark-
ers, rather than Single Nucleotide Polymor-
phisms (SNPs) which are more commonly
used in model organisms (see Ref. 6 for dis-
cussion). There are two main approaches to
kinship inference from microsatellite data:

using genetic distance estimates and statis-
tical likelihood methods 1, 8, 23−25, and enu-
meration of feasible relationships based on
Mendelian constraints 2, 5, 6, 10, 22. However,
with the exception of COLONY 25, none of
the existing kinship reconstruction methods
is designed to tolerate genotyping errors or
mutation. Yet, both errors and mutations
cannot be avoided in practice and identifying
these errors without any prior kinship infor-
mation is a challenging task.

In Refs. 5, 6, 10, 22 we have presented
a method for reconstructing sibling relation-
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ships from single generation microsatellite
data that optimally identifies the most parsi-
monious set of sibling groups subject only to
Mendelian inheritance constraints. We have
shown that our method performs comparably
or better than other sibling reconstruction
approaches on both biological and simulated
data. While our method was not designed
for data with genotyping errors, it did per-
form relatively well on data that contained
a limited number of errors. In this paper
we present a new approach for reconstruct-
ing sibling relationships from microsatellite
data designed explicitly to tolerate genotyp-
ing errors and mutations in data.

1.1. Microsatellite Markers

While there are several molecular mark-
ers used in population genetics such as
allozymes, AFLPs, RFLPs, microsatellites
(also known as SSRs, STRs, SSLPs, and
VNTRs) are the most commonly used in
population biology for non-model organ-
isms. Microsatellites are repeats of short
DNA sequences distributed throughout the
genome. These are co-dominant, unlinked,
multi-allelic markers that offer numerous ad-
vantages for population studies. Generally,
phase or haplotype information is not avail-
able for microsatellite loci in non-model or-
ganisms.

1.2. Sibling Reconstruction Problem
Statement

The main focus of our paper is to design a
method that accurately reconstructs sibling
groups from microsatellite data of a single
generation in presence of genotyping errors
and mutations. We have formally defined the
problem of sibling reconstruction in Ref. 6
and we restate it here. Let U = {X1, ...Xn}
be a population U of n diploid individuals of
the same generation. Each individual is rep-
resented by a genetic (microsatellite) sample
at l loci. That is, Xi = (〈ai1, bi1〉, ..., 〈ail, bil〉)

and aij and bij are the two alleles of the indi-
vidual i at locus j represented as some identi-
fying string. We assume that the same string
in the same locus corresponds to the same
allele, however alleles from different loci are
independent. The goal is to reconstruct the
full sibling groups which is a partition of in-
dividuals into P1, ...Pm where individuals in
the same partition Pi have the same parents.
We assume no knowledge of parental infor-
mation.

1.3. 2-Allele Algorithm

In Ref. 6 we presented a combinatorial 2-
Allele Min set cover algorithm for the
siblings reconstruction problem. We rely on
Mendelian inheritance constraints that dic-
tate that full siblings must share their par-
ents’ alleles at all loci. We formalize this rule
as the 2-Allele Property in Ref. 5 as fol-
lows: for a set of individuals there exists a
reordering of individuals’ alleles within a lo-
cus such that the total number of distinct
alleles on each side at this locus is at most 2.
Note, that the 2-allele property is a necessary
constraint for a group of individuals to be
siblings but not sufficient. Notice, also, that
any two individuals necessarily satisfy the 2-
allele property since by default the number
of alleles on each side of any locus is at most
two.

The 2-Allele Min set cover algo-
rithm works by first generating all maxi-
mal sibling groups that obey the 2-allele
property. The algorithm then uses set
cover19 to find the minimum number of sib-
ling groups necessary to explain the data.

1.4. Errors in Microsatellite Data

Errors and mutation cannot be verifiably
avoided when genotyping wild populations.
While there may be several sources and types
of errors (see Refs. 13, 17), here we are con-
cerned primarily with how they affect the
sibling reconstruction problem. We now dis-
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cuss errors typically present in microsatellite
data.

Allelic Dropout occurs when one or both
alleles are not amplified during poly-
merase chain reaction (PCR) and is
one of the most common errors 13. If
one of the alleles is not amplified, the
result mimics a homozygote. The case
when both alleles are missing is eas-
ily identifiable as no amplification has
occured and is handled by a simple ex-
tension of the 2-allele algorithm
(see section 1.5).

Heterozygous Mistype occurs when two
alleles are amplified by PCR but one
or both of them, for a variety of rea-
sons, are not recorded as present. In
the context of sibling reconstruction
any allele that was not present in ei-
ther one of the parents is a mistype.

Homozygous Mistype occurs when only
one allele is amplified by PCR, and
does not match any of the parental
alleles.

Genetic Mutation is the actual variation
in the alleles, also called polymor-
phism. This arises from mistakes
made during DNA replication. A
mutation may also be classified as
Mistypes when reconstructing sibling
relationships.

Allele Combination Error occurs when
one or both alleles at a locus are
present in the parents (or sibling
group) but Mendelian inheritance
rules are still violated.

Null Alleles is the lack of any amplifica-
tion. When no allele is amplified it
can be explicitly marked as a missing
allele.

1.5. Accommodating Missing Alleles

To accommodate known missing alleles in the
data we denote them by a special symbol,
e.g., a wildcard (*). The 2-Allele Min set

cover algorithm then proceeds to construct
feasible sibling sets treating the wildcard as
any possible allele.

1.6. Consensus Methods

We base our idea of error-tolerant sibling
reconstruction on the consensus-based ap-
proach. The idea behind consensus methods
is to combine different solutions to the same
problem into one solution, i.e., group deci-
sion making. The formal theory of voting
and group decision making dates back to the
eighteenth century 11, 12 and modernized by
Kenneth J. Arrow in 1951 3. Recently mathe-
matical and computational group choice and
consensus techniques have been applied to
biological problems, mostly in the context
of phylogenetic reconstruction 9. Our solu-
tion is based on using such methods to tol-
erate genotyping errors. In Section 2.1 we
define consensus in the context of siblings re-
construction problem, and discuss some ap-
proaches and their feasibility.

2. CONSENSUS BASED APPROACH
FOR ERROR-TOLERANT SIBLINGS
RECONSTRUCTION

We now describe our approach to recon-
structing sibling relationships in presence of
genotyping errors. Consider an individual Xi

which has some genotyping error(s). Any er-
ror that is affecting siblings reconstruction
must be preventing Xi’s sibling relationship
with at least one other individual Xj , who in
reality is its sibling. It is unlikely that an er-
ror would cause two unrelated individuals to
be paired up as siblings, unless all error-free
loci do not contain enough information. It
is possible that an individual has more than
one error (albeit extremely rarely 13, 17), yet
it is unlikely that all the errors bias the so-
lution in the same direction.

Thus, we can discard one locus at a time,
assuming it to be erroneous, and obtain a
sibling reconstruction solution based on the
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remaining loci. If all such solutions put the
individuals Xi and Xj in the same sibling
group (i.e., there is a consensus among those
solutions), we consider them to be siblings.
The bulk of our error-tolerant approach is
concerned with pairs of individuals that do
not consistently end up in the same sibling
group during this process, that is, there is no
consensus about their sibling relationship.

We now present a formal definition of
consensus in the context of sibling recon-
struction and describe our consensus-based
algorithm for error- tolerant sibling recon-
struction.

2.1. Consensus Methods for Siblings
Reconstruction

Recall that for a population of individuals
U = {X1 . . . Xn} the goal of a siblings re-
construction problem is to find a partition
of the population into sibling groups S =
{P1 . . . Pm} where all individuals are covered
with no overlap:⋃

1≤j≤m

Pj = U and ∀j, k Pj ∩ Pk = ∅

A partition defines an equivalence relation-
ship. Two individuals are equivalent if and
only if they are in the same partition of the
solution S.

Xi ≡S Xj ⇐⇒ ∃Pk ∈ S s.t. Xi ∈ Pk∧Xj ∈ Pk

We are now ready to give the definition of a
consensus method.

Definition 2.1. A consensus method for
sibling groups is a computable function f

that takes k solutions S = {S1, ..., Sk} as in-
put and computes one final solution.

Definition 2.2. A strict consensus 21 C is a
partitioning of sibling groups where two indi-
viduals are together only if they were in the
same partition for all solutions:

C = {PC,1 . . . PC,m} where
Xj ≡C Xk ⇐⇒ ∀Si ∈ S Xj ≡Si

Xk

The strict consensus defines a true equiva-
lence relation and, thus, is a transitive func-
tion:

(Xi ≡C Xj ∧ Xj ≡C Xk) ⇒ Xi ≡C Xk

Any individual that is not consistently
placed into a partition in all solutions will be
added as a singleton. Such a consensus solu-
tion is reliable for the individuals that have
been placed together in a group, but there
may be many singleton groups.a

2.2. Distance-based Consensus

The original 2-Allele Algorithm finds
the most parsimonious solution with the
fewest number of sibling groups. While the
algorithm performs well in absence of errors,
it is not designed to handle errors. Moreover,
the resulting sibling groups returned by the
algorithm may overlap. The strict consen-
sus, on the other hand, conservatively identi-
fies reliable sibling relationships and puts the
rest back into singleton groups. In order to
combine the best aspects of both methods we
present a distance based consensus method.
We start with a strict consensus of the “leave-
one-locus-out” solutions and search for the
nearest good parsimonious solution. In order
to search for such a solution we need quan-
titative measures to 1) assess the quality of
a solution, fq, and 2) calculate the pairwise
distance between solutions, fd. Assume that
we have the two functions fq and fd.

fq : S → R and fd : S × S → R

Since we start with a strict consensus C
the partitions in the solution cannot be re-
fined any further. Therefore to improve the
solution, we use the operations of merging

aIf we relax the above constraint to require not all but most of the solutions to agree on the equivalence relationship it gives us a
“majority consensus”. While it performs well in other applications, such as phylogenetic reconstruction 7, it is too biased towards
loci with errors in the context of sibling reconstruction.
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two sets. The following monotonic property
must be obeyed by any improved solution C′:

∀Xi,Xj ∈ U Xi ≡C Xj =⇒ Xi ≡C′ Xj . (1)

Thus, given a solution C, we look for an
improved solution C′ that minimizes fd(C, C′)
and maximizes fq(C′). To combine the two
objectives we can formulate the following op-
timization problems:

(1) Maximize fq with an upper bound on fd

(2) Minimize fd with a lower bound on fq

(3) Maximize/Minimize some (linear) com-
bination of fd and fq

We prove all of these problems to be NP-
Hard in general for arbitrary fq and fd.

Theorem 2.1. Let C be a collection of sib-
ling groups and k ∈ R. Let S be the set of all
solutions that are an improvement of C and
are obtainable from C by merging sibling sets.
The problem of finding an improved solution
C′ ∈ S such that

fq(C′) = max
S∈S

fd(C,S)≤k

fq(S)

is NP-hard.

Proof. We show that this problem is NP-
hard by reducing from the 2-allele min
set cover problem, which we have proven
to be MAX SNP-hard 4. We start with a
collection C of singleton only sets and aim to
minimize the number of sibling groups.

Formally, for an input U = {X1, ...Xn}
to the 2-allele min set cover, the cor-
responding input to the distance-based con-
sensus problem is C = {{X1}, ..., {Xn}} and
k = 0. We define the distance function fd to
be

fd(C, C′) =

{
0 groups in C can be merged to form C′

1 otherwise

Finally, we define the quality function
fq(C′) = |U | − |C′|. This ensures the mini-
mum number of sets to maximize the objec-
tive function since |C′| < |U |.

The bound on fd guarantees that any
merged sibgroups obey the 2-allele property
and the quality maximization objective en-
sures that the solution is a minimum set
cover. �

Thus, finding improved solutions subject
to the first objective is NP-hard. We now
show that the second objective is NP-hard
as well.

Theorem 2.2. Let C be a collection of sib-
ling groups and k ∈ R be the lower bound
on fq. Let S be the set of all solutions that
are an improvement of C and are obtainable
from C by merging sibling sets. The problem
of finding an improved solution C′ ∈ S such
that

fd(C, C′) = min
S∈S

fq(S)≥k

fd(C, S)

is NP-hard.

Proof. Similar to the proof of Theorem 2.1
above, we again reduce from the 2-allele
min set cover problem. Given an in-
put U = {X1, ...Xn} to the 2-allele min
set cover, the corresponding input to the
distance-based consensus problem is C =
{{X1}, ..., {Xn}} and k = n. We define the
distance function fd as follows:

fd(C, C′) =

{
∞ groups in C can be merged to form C′

1 otherwise

We define the quality function fq as the
sum of the distance from strict consensus and
the number of sets:

fq(C′) = fd(C, C′) + |C ′|.
A reduction from the 2-allele min set

cover problem follows. �
Lastly, for an arbitrary combination of fq

and fd, Objective 3 is unattainable as well.

Theorem 2.3. Let C be a collection of sib-
ling groups. Let S be the set of all solutions
that are an improvement of C and are ob-
tainable from C by merging sibling sets and
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let g(fq, fd) be a (linear) combination of the
functions fq and fd. The problem of finding
an improved solution C′ ∈ S such that

g(fd(C, C′), fq(C′)) = OPT
S∈S

{g(fd(C, S), fq(S))}

is NP-hard.

Proof. This theorem follows from the The-
orem 2.1 (OPT is max) and Theorem 2.2
(OPT is min). The objective with only one
function is a special case of a linear combina-
tion. Hence both the minimization and the
maximization objectives are NP-Hard. �

We have shown that the three versions of
the problem of finding the closest best solu-
tion to a given solution of the sibling recon-
struction problem are NP-hard. In the next
section we present a heuristic approach that
efficiently finds good solutions.

3. GREEDY DISTANCE-BASED
CONSENSUS

We now present a greedy algorithm that
given a collection of sibling reconstructions
attempts to find a good solution with few sib-
ling groups while allowing for a small number
of errors in the data. The Greedy Consen-
sus Algorithm uses costs associated with
errors in data to define a merging cost and
to find and merge the pair of sibling groups
with the minimum (merging) cost. The sib-
ling groups to be merged are selected by ex-
haustively examining all pairs of groups and
identifying the merge that results in the low-
est total merging cost for the merged group.
Our quality function is based on the parsi-
mony assumption: we try to find the min-
imum number of sibling groups and errors
that explain the data. Therefore, to get the
minimum number of sibling groups our qual-
ity function is defined as fq = |U | − |C|.

3.1. Distance Function

We define two functions necessary to calcu-
late the distance fd : the cost and the benefit
of assigning an individual to a sibling group.
The cost of an assignment is used when an in-
dividual cannot be assigned to a group with-
out violating the 2-allele property. The to-
tal cost of tolerating errors is computed us-
ing user-defined costs for each type of possi-
ble error in data. These costs are provided
by the user depending on the expected error
rates and number of loci. By default, these
may be uniform. The benefit of an assign-
ment is determined by the shared alleles and
allele pairs of the new individual, which can
be added without violating 2-allele property.

More formally, we assume that we are
given as an input the relative costs of the four
distinct error types and the upper bounds on
the number of errors per individual, per sib-
ling group, and per individual in a sibling
group. b The cost and the benefit of assign-
ing an individual X to a sibling group Pi is
defined as:

fassign(Pi,X) =

{
benefit If X can be added to Pi

cost otherwise.

Suppose C = {P1, ..., Pm} is a collection of
sibling groups and C′ is a collection of groups
obtained from C by merging groups Pi and
Pj . Then we define the distance between C
and C′ as follows:

fd(C, C′) = min

⎧⎨
⎩

∑
X∈Pi

fassign(Pj , X),
∑

X∈Pj

fassign(Pi, X)

⎫⎬
⎭

3.2. Greedy Algorithm

Given an upper bound on the number of er-
rors and the relative error costs, Greedy
Consensus algorithm searches for the
solution with the fewest number of sibling

bNote that COLONY 25, the only other sibling reconstruction method that explicitly tolerates errors in data, requires considerably
more detailed information about the types, costs, and frequencies of errors.
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groups and errors necessary to explain the
data. We denote by U|i the set of individu-
als U with the ith locus being omitted. The
Greedy Consensus algorithm has three
phases:

(1) Calculate the 2-allele min set cover
solutions for U|1 . . . U|l,

(2) Calculate the strict consensus C of the
above solutions,

(3) Merge sibling groups greedily as allowed
by the parameters.

Phase 1 runs the 2-allele min set
cover algorithm to obtain solutions for
dropping one locus. Any technique for sib-
lings reconstruction may be used here. We
use the 2-allele min set cover algo-
rithm as the basis since it performs as well
or better than other available methods and
makes fewest assumptions 6. Phase 2 works
by examining all the solutions from phase
1 and placing two individuals in the same
sibling group only if all the solutions agree.
Unpaired individuals are placed in singleton
groups. Finally, phase 3 works iteratively by
merging the closest pair of sibling groups.
This is done by calculating the fd distance for
all pairs of sibling groups at every iteration.
The pair that gives the smallest distance is
merged. This continues until the minimum
distance is greater than either the maximum
editing cost per sibling group or the average
edit cost exceeds maximum average editing
cost per sibling group. Both of these costs
are input parameters.

To analyze the computational time com-
plexity of the Greedy Consensus algo-
rithm, we consider each phase separately.
Computing the 2-allele min set cover
for each subset of the input is the most
expensive part of the algorithm. The 2-
allele min set cover problem is MAX
SNP-hard 4, which means that it cannot be
approximated within some constant factor in

polynomial time, unless P = NP . We use
the commercial mixed integer program solver
CPLEXc to solve the problem to optimality.
Greedy Consensus algorithm executes
l runs of 2-allele min set cover to com-
pute the l solutions for consensus method.

The consensus part (Phases 2-3) of
Greedy Consensus algorithm is poly-
nomial: The total time for O(n) iterations is
O(n3l). Note that our approach is not exclu-
sive to the 2-allele min set cover but
may be used with a faster algorithm for a
base solution.

4. EXPERIMENTAL METHODOLOGY

We tested our approaches on random
datasets generated by coupling the random
simulations used in Refs. 5, 6, 10 and adding
random errors to the dataset. We compared
results of our Greedy Consensus algo-
rithm with the original 2-allele min set
cover 6 as well as those of the Family
Finder software 8 and a limited comparison
to COLONY software 25. The comparison to
COLONY was limited by the computational
resources since as a maximum likelihood-
based method it is computationally inten-
sive.

We also tested our approach on biological
datasets with known sibling groups: Tiger
Shrimp (Penaeus monodon18), ants (Lep-
tothorax acervorum 15), and Atlantic Salmon
(Salmo salar 16). Only the shrimp dataset
had original errors in it. We introduced er-
rors into other datasets to test our approach.

4.1. Random Simulations

We validate our approach using random sim-
ulations. We first create random diploid par-
ents (male and female) and then generate
complete genetic data for offspring. We use
a range of values for the parameters of the
varying the number of males, females, alleles,

cCPLEX is a registered trademark of ILOG
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loci, number of offsprings and sibling groups
(families). We then introduce errors into the
data and use various methods to reconstruct
the sibling groups. We compare our results to
the actual known sibling groups in the data
to assess accuracy. We measure the error
rates using the Gusfield’s partition distance
14. The base population is generated using
uniform distribution as described in Ref. 6.

We used the following ranges of parame-
ter settings for the fixed error rate of 10% of
individuals:

• The number of adult females F and the
number of adult males M were equally
set to 5, 20.

• The number of loci sampled l = 4, 6, 8, 10.
• The number of alleles per locus (with

uniform allele frequency distribution)
a = 10, 15.

• The the number of true sibling groups
j = 5, 10, 20.

• The maximum number of offspring per
couple (with uniform family size distri-
bution) o = 5, 10.

4.2. Random Errors

Errors were introduced uniformly at random
with a probability of 0.1 of an individual hav-
ing an error (which is higher than typical for
real data). Once an individual to have an
error is chosen, we choose the locus to be in-
troduce an error uniformly at random. Then
the type of the error to be introduced is cho-
sen by generating a random number between
0 and 1, and choosing the corresponding er-
ror from Table 1(a). While the probability
of 0.1 for having an individual with an er-
ror may seem large compared to Ref. 13, it is
meant to exhibit how robust our method is to
genotyping errors. It also is affected by the
number of loci since we introduce only one
erroneous locus for an individual. We fur-
ther test our approach by varying the error
rate for selected parameters.

Table 1. Random errors and associated costs.

(a) Error ranges for the different error types

Type of Error Random Number Range

Allelic Dropout [0, 0.5]
Heterozygous Mistype (0.5, 0.7]
Homozygous Mistype (0.7, 0.95]
Genetic Mutation otherwise

(b) Costs and relative thresholds used for Greedy
Algorithm Simulations

Cost value

Allelic Dropout 0.34
Heterozygous Mistype 0.7
Homozygous Mistype 1
Allele Combination Error 0.4
Maximum Editing per individual 2.0
Maximum Editing per group ∞
Maximum Avg Edit Ind in Group 0.45

The error rates in Table 1(a) have been
derived from biological data as well as
Ref. 13. The values used in our experiments
are shown in Table 1(b).

4.3. Evaluation

We measure the accuracy of the solution by
comparing the known sibling sets with those
generated by our algorithm, and calculating
the minimum partition distance 14. The so-
lution error is the percentage of individuals
that would need to be removed to make the
reconstructed sibling set equal to the true
sibling sets. Note that the 2-allele min
set cover does not return a partitioning of
the individuals, whereas the Greedy Con-
sensus algorithm partitions them.

The experiments were run on IntelTM

Quad Core Xeon Processor (2.66GHz) with
24 GB RAM memory.

4.4. Sibling Group Reconstruction
Methods

We compare the performance of the Greedy
Consensus algorithm to the 2-Allele
Min Set Cover algorithm and two
other sibship reconstruction methods. While
there are other sibling reconstruction meth-
ods available, in our evaluations, partially
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presented in Ref. 6, Family Finder and
COLONY, together with the 2-Allele Min
Set Cover, were the best.

Family Finder. The approach proposed
in Ref. 8 is a mixture of likelihood and
combinatorial techniques. The algorithm
constructs a graph with individuals as
nodes and the edges weighted by the
pairwise likelihood ratio that the indi-
viduals are siblings versus being unre-
lated. Very light edges are ignored. Sib-
ling groups are then dense areas of the
graph.

COLONY. Wang 25 has proposed the only
other known error tolerant approach.
The method uses a simulated annealing
algorithm that works by starting with
known sibling groups. Similar to the con-
sensus approach, individuals whose sib-
ling groups are not known are placed
into singleton sibling groups. Iteratively
alternate solutions are created by ran-
domly changing group memberships of
individuals. It uses a “cool-down” ap-
proach to reduce exploration after a large
number of iterations. The method as-
sumes that at least one gender in the
population is monogamous.

5. RESULTS

We have compared the accuracy of recon-
struction of sibling groups by the new error-
tolerant approach to the best existing sib-
ling reconstruction methods. We use simu-
lated data with a wide range of parameters.
On simulated data our Greedy Consen-
sus algorithm performs better than all other
methods on almost all parameters. When the
number of loci is small the 2-allele min
set cover performs better in some cases,
but overall the consensus method performs
best on simulated data. Both Family Finder
and COLONY are very inaccurate when the
number of loci is small, thus making them

expensive for wild populations. For all sim-
ulations with 6 or more loci, our approach
was 95% or more accurate, even if the num-
ber of erroneous individuals went up to 20%.
Family Finder and COLONY showed con-
siderable improvement with increase in the
number of loci and alleles per locus.

We present the results on simulated data
in Figure 1. We show the accuracy as a func-
tion of the number of sampled loci, number
of alleles per locus, number of families, and
the size of a family.

On real biological data all methods per-
formed comparably well with slight variation
around the 90% accuracy. The consensus ap-
proach achieved over 90% accuracy for all the
biological datasets, which was slightly better
than the 2-Allele Min Set Cover.

6. CONCLUSIONS

We have proposed an error-tolerant approach
for reconstructing sibling relationships from
microsatellite data. Our method is based
on the idea of taking a consensus of par-
tial solutions obtained by omitting one lo-
cus at a time and then locally improving
the resulting combined solution. We proved
the intractability of any general formulation
of distance based consensus methods. We
proposed a new combinatorial algorithm for
the problem of reconstructing sibling rela-
tionships from single generation microsatel-
lite genetic data in presence of genotyping
errors. We have implemented and tested our
approach on both simulated and real data.
We have provided a framework for distance
based consensus methods which may be used
with any combination of distance and quality
functions, possibly yielding better results.

Consensus methods give a partition, un-
like a set cover, and the proposed Greedy
Consensus algorithm acheived over 95%
accuracy for most datasets and performs
comparably or better than other approaches
in most cases.
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Fig. 1. Results on simulated datasets. Only 50 iterations were used for the COLONY algorithm due to its computational
inefficiency and time constraints.
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While Family Finder and COLONY performed
comparably well in some scenarios, our method
requires considerably less input, makes fewer as-
sumptions, and was consistently over 90% accurate.
Moreover, our method was considerably faster than
COLONY which performed an almost an entire ex-
haustive search for a global minimum of the likeli-
hood function. COLONY also requires one of the
parents to be monogamous which is an unrealistic
assumption for many species. Family Finder did not
perform well for large families, especially when the
allele frequency was high.

6.1. Future Work

Our approach can be combined with a variety of
methods for both generating the input solutions, and
developing a consensus among them. In the future
we intend to explore other than greedy optimization
objectives to avoid local minima in the distance func-
tion.

Our technique can be extended to solve other
problems in kinship analysis. Since our approach is
not restricted to the methods used for generating in-
put solutions, it can be used as a general consensus
between different methods of sibling reconstruction.
For example, a tree-based consensus method can be
used to merge pedigrees.
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Histoire de l’Académie Royale des Sci., 1784.

12. Marie Jean Antoine Nicolas de Caritat marquis de
Condorcet. Essay on the application of analysis to
the probability of majority decisions, 1785.

13. P. Gagneux, C. Boesch, and D. S. Woodruff. Mi-
crosatellite scoring errors associated with noninva-
sive genotyping based on nuclear DNA amplified
from shed hair. Mol.Eco., 6(9):861-8,Sep 1997.

14. D. Gusfield. Partition-distance: A problem and class
of perfect graphs arising in clustering. Information
Processing Letters, 82(3):159–164, May 2002.

15. R. L. Hammond, A.F. G. Bourke, and M. W. Bru-
ford. Mating frequency and mating system of the
polygynous ant, Leptothorax acervorum. Molecular
Ecology, 10(11):2719–2728, 1999.

16. C. M. Herbinger, P. T. O’Reilly, R. W. Doyle, J. M.
Wright, and F. O’Flynn. Early growth performance
of atlantic salmon full-sib families reared in single
family tanks or in mixed family tanks. Aquaculture,
173(1–4):105–116, 1999.

17. J. I. Hoffman and W. Amos. Microsatellite genotyp-
ing errors: detection approaches, common sources
and consequences for paternal exclusion. Molecular
Ecology, 14(2):599–612, 2005.



284

18. D. R. Jerry, B. S. Evans, M. Kenway, and K. Wil-
son. Development of a microsatellite dna parentage
marker suite for black tiger shrimp Penaeus mon-
odon. Aquaculture, 255(1-4):542-547, 2006.

19. R. M. Karp. Reducibility among combinatorial prob-
lems. In R. E. Miller and J. W. Thatcher, edi-
tors, Complexity of Computer Computations, 85–
103. Plenum Press, 1972.

20. D. A. Konovalov, C. Manning, and M. T. Henshaw.
KINGROUP: a program for pedigree relationship re-
construction and kin group assignments using ge-
netic markers. Molecular Ecology Notes,4:779-782,
2004.

21. F. R. McMorris, D. B. Meronik, and D. A. Neu-
mann. A view of some consensus methods for trees.
In J. Felsenstein, editor, Numerical Taxonomy, pages
122–125. Springer-Verlag, 1983.

22. S. I. Sheikh, T. Y. Berger-Wolf, W. Chaovalitwongse,
and M. V. Ashley. Reconstructing sibling relation-
ships from microsatellite data. In Proceedings of
the European Conference on Computational Biology
(ECCB), January 07.

23. B. R. Smith, C. M. Herbinger, and H R. Merry. Ac-
curate partition of individuals into full-sib families
from genetic data without parental information. Ge-
netics, 158(3):1329–1338, July 2001.

24. S. C. Thomas and W. G. Hill. Sibship reconstruction
in hierarchical population structures using Markov
chain monte carlo techniques. Genet. Res., Camb.,
79:227–234, 2002.

25. J. Wang. Sibship reconstruction from genetic data
with typing errors. Genetics, 166:1968–1979, April
2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


