
27

SCALABLE COMPUTATION OF KINSHIP AND
IDENTITY COEFFICIENTS ON LARGE PEDIGREES

En Cheng*, Brendan Elliott, and Z. Meral Ozsoyoglu

Electrical Engineering and Computer Science Department,

Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
*Email: exc92@case.edu

With the rapidly expanding field of medical genetics and genetic counseling, genealogy information is becoming increasingly abundant.

An important computation on pedigree data is the calculation of identity coefficients, which provide a complete description of the

degree of relatedness of a pair of individuals. The areas of application of identity coefficients are numerous and diverse, from genetic

counseling to disease tracking, and thus, the computation of identity coefficients merits special attention. However, the computation of

identity coefficients is not done directly, but rather as the final step after computing a set of generalized kinship coefficients. In this

paper, we first propose a novel Path-Counting Formula for calculating generalized kinship coefficients, which is motivated by Wright’s

path-counting method for computing the inbreeding coefficient for an individual. We then present an efficient and scalable scheme for

calculating generalized kinship coefficients on large pedigrees using NodeCodes, a special encoding scheme for expediting the

evaluation of queries on pedigree graph structures. We also perform experiments for evaluating the efficiency of our method, and

compare it with the performance of the traditional recursive algorithm for three individuals. Experimental results demonstrate that the

resulting scheme is more scalable and efficient than the traditional recursive methods for computing generalized kinship coefficients.

* Corresponding author.

1. INTRODUCTION

In human genetics, pedigree diagrams are utilized to

trace the inheritance of a specific trait, abnormality, or

disease, calculate genetic risk ratios, identify individuals

at risk, and facilitate genetic counseling. A sample

pedigree diagram is shown in Figure 1a. Pedigrees are

hierarchical hereditary structures and are typically

represented as directed acyclic graphs. More

specifically, a pedigree can be defined as “a simplified

diagram of a family’s genealogy that shows family

members’ relationships to each other and how a specific

trait, abnormality, or disease has been inherited”
7
.

Generally speaking, genetic counseling is the process by

which patients or relatives, at risk of an inherited trait or

disease, are advised of the consequences and nature of

the trait or disease, the probability of developing or

transmitting it, and the options open to them in

management and family planning in order to prevent,

avoid or ameliorate it. In order to calculate genetic risk

ratios and identify individuals at risk, we need a measure

of the degree of relatedness of two or more individuals.

It is worthwhile to mention that calculating genetic risk

ratios allows mainstream epidemiologists to leverage

genetics for the study of diseases. In addition to the

study of qualitative diseases, many developments in

quantitative genetics also require knowledge of the

probability that a pair of relatives have specified

genotypes. Calculation of correlations between relatives

n1 n2

n6n4 n5

n9n8

n3 n7

n13n10

n14

n12n11

n15 n16

n17

Fig. 1a. Small pedigree diagram

n1 n2

n4 n5 n6n3

n9n8 n10

n14

n7

n12 n13

0, 1.

0,0,

1.0,
0,1,

1.1,
0,2.

1.2.

2.
3,

4,
0,0,0.

1.0,0.

2.0.

0,0,1.

1.0,1.

2.1.

0,0,1.0.

1.0,1.0.

2.1.0.

4,0.

0,2.0,

1.2.0,

3,0,

0,2.1.

1.2.1.

3,1.
n11

5.

n15 n16

n17

0,2.0,0,

1.2.0,0,

3,0,0,

5.0,

0,2.0,1.

1.2.0,1.

3,0,1.

5.1.

0,0,1.0.0.

0,2.0,0,0.

1.0,1.0.0.

1.2.0,0,0.

2.1.0.0.

3,0,0,0.

4,0.0.

5.0,0.
Fig. 1b. Pedigree as a graph with NodeCodes

28

forms the foundation of classical biometrical analyses of

quantitative traits such as height, weight, and cholesterol

level
10

. In summary, making full use of genealogy

information by measuring the degree of relatedness of a

pair of individuals is a significant and practical issue in

modern genetics.

Note that all measures of relatedness are based on

the concept of identical by descent. Two genes are

identical by decent (IBD) if one is a physical copy of the

other or if they are both physical copies of the same

ancestral gene. This concept is primarily due to

Cotterman
3
 and Malecot

14
 and has been successfully

applied to many problems in population genetics. The

simplest measure of relationship between two

individuals a and b is their kinship coefficient
abΦ . The

kinship coefficient
abΦ is the probability that a gene

selected randomly from a and a gene selected randomly

from the same autosomal locus of b are IBD. While

useful in many applications, the kinship coefficient does

not completely summarize the genetic relation between

two individuals. For instance, siblings and parent-

offspring pairs share a common kinship coefficient of ¼.

To better discriminate between different types of “pairs

of relatives”, identity coefficients were introduced by

Gillois
6
, Harris

8
, and Jacquard

11
. Considering four

genes of two individuals on a fixed autosomal locus,

there are 15 possible IBD relations due to the fact that

identity may exist within as well as between individuals.

A notable characteristic of identity coefficients is that

they provide a complete description of the probability of

identity by descent between single loci of two

individuals. Hence, this unique feature of identity

coefficients has resulted in their application in a diverse

range of fields. This includes the calculation of risk

ratios for qualitative disease, the analysis of quantitative

traits, genetic counseling in medicine, and wider studies

of the genetic structure of populations.

A recursive algorithm for the calculation of identity

coefficients proposed by Karigl
12

 has been known for

some time. This method requires that one calculate

a set of generalized kinship coefficients, from which

one can obtain the identity coefficients via a linear

transformation. Although this recursive approach works

well for small to moderate-size pedigrees, it can take

impractical amounts of time when applied to very large

pedigrees, particularly when coefficients are desired for

many pairs of individuals. As data collection and

storage technology are becoming more readily available

at a lower cost, the size and variety of usable pedigree

data has been increasing at a high rate. There are

already large, heavily used pedigree data collections

such as the Utah Population Database
15

 with 1.6 million

genealogy records. Thus, there is an urgent need for

scalable techniques for efficiently calculating identity

coefficients on large pedigrees due to both increasing

volume of available pedigree data, and increasing use of

pedigree data analysis in medical genetics for hereditary

diseases.

In this paper, we propose a novel path-counting

formula for the calculation of generalized kinship

coefficients, motivated by Wright’s path-counting

formula for the computation of inbreeding coefficients.

It has been previously shown that inbreeding coefficient

queries can be efficiently evaluated using Wright’s path-

counting formula in conjunction with the NodeCodes

encoding scheme
4
. Thus, once we have defined the path-

counting formula, we can utilize NodeCodes and

develop an efficient and scalable scheme for calculating

the generalized kinship coefficients on very large

pedigrees. We also present experimental results

evaluating the performance of our strategy for

calculating generalized kinship coefficients.

The main contributions of our work are as follows:

I. A novel path-counting formula for the calculation

of generalized kinship coefficients.

II. An efficient and scalable scheme for calculating

the generalized kinship coefficients and identity

coefficients on large pedigrees using NodeCodes.

III. Experimental results demonstrating significant

performance gains for calculating the generalized

kinship coefficients for three individuals versus the

traditional recursive algorithms.

2. RELATED WORK

There are two main approaches for computing kinship

coefficients: a path-counting approach and an iterative

approach
1
. The path-counting approach requires the

detection of common ancestors and the summation of

their contributions to the kinship coefficient. The

iterative approach does not require the identification of

paths through pedigrees. It begins with an initial group

of individuals, and proceeds through the pedigree,

computing successively the kinship between individuals

who are descended from the initial population. The

path-counting method has minimal storage requirements,

but with some penalty in terms of computing time. The

iterative approach is feasible to compute kinship

coefficients for many individuals only if the kinship

matrix is relatively sparse.

29

Among previous studies concerning the

computation of identity coefficients, Karigl presented a

description of identity coefficients and generalized

kinship coefficients and proposed a technique that

calculates the identity coefficient via a series of

recursive calls to first calculate the generalized kinship

coefficients and then a linear transformation is applied
12

.

The generalized kinship coefficients include kinship

coefficients for two, three, four, and two pairs of

individuals. The basic problem is that each generalized

kinship coefficient requires a separate recursion through

the pedigree, which can be very time-consuming if the

pedigree is very deep. Thus, the recursive algorithm can

be infeasible when applied to very large pedigrees,

particularly when coefficients are desired for many pairs

of individuals.

Wright’s formula
17

, for computing the inbreeding

coefficient of an individual is a typical example of path-

counting formula. Utilizing an encoding scheme called

NodeCodes in conjunction with Wright’s formula, an

efficient method for computing inbreeding coefficient is

proposed by Elliott
4
. This paper was motivated by the

question that whether we can extend the benefit of

utilizing encoding schemes in calculation of the

inbreeding coefficient to the computation of generalized

kinship coefficients for more than 2 individuals..

3. BACKGROUND

This section describes condensed identity coefficients,

generalized kinship coefficients, and path-counting

formulas for standard kinship coefficient in more detail.

3.1. Condensed Identity Coefficients

If we consider four genes of two individuals on a fixed

autosomal locus, then the 15 possible states can be

reduced to 9 condensed identity states if we ignore the

distinction between maternally and paternally derived

genes. The states range from state 1 in which all four

genes are IBD to state 9 in which none of the four genes

are IBD. The probabilities associated with each

condensed identity state,
1∆ to

9∆ , are called condensed

identity coefficients. The 15 states and their respective

condensed identity coefficients are shown in Figure 2a.

The condensed identity coefficients can be

computed from the generalized kinship coefficients

(
abΦ ,

abc
Φ ,

abcd
Φ , and

,ab cd
Φ) using the linear

transformation shown in Figure 2b. Hence, we focus on

the computation of generalized kinship coefficients.

Probability

Identity State

1
∆ 2∆ 3∆ 4∆ 5∆ 6∆

A's alleles

B's alleles

M
a
te

rn
a

l

P
a

te
rn

a
l

7∆ 8∆ 9∆

Fig. 2a. The 15 possible identity states for individuals A and B, grouped

by their 9 condensed states. Lines indicate alleles that are IBD.

1

2

3

4

5

6

7

,8

,9

11 1 1 1 1 1 1 1 1
22 2 2 2 1 1 1 1 1
22 2 1 1 2 2 1 1 1
44 0 2 0 2 0 2 1 0
88 0 4 0 2 0 2 1 0
88 0 2 0 4 0 2 1 0

1616 0 4 0 4 0 2 1 0
44 4 2 2 2 2 1 1 1

16 0 4 0 4 0 4 1 0 16

aa

bb

ab

aab

abb

aabb

aa bb

ab ab

∆
Φ∆
Φ∆
Φ∆
Φ∆ =
Φ∆
Φ∆

Φ∆
Φ∆

   
   
   
   
   
   
        

Fig. 2b. Linear transformation to calculate identity coefficients

3.2. Condensed Identity Coefficients

In addition to the kinship coefficients
abΦ for two

individuals, there is a set of generalized kinship

coefficients for three, four, and two pairs of individuals,

which are denoted as
abc

Φ ,
abcd

Φ , and
,ab cd

Φ ,

respectively.
abcΦ (or

abcd
Φ) is the probability that three

(or four) randomly chosen genes, one from each

individual, are IBD.
,ab cd

Φ is the probability that a

random gene from a is IBD with a random gene from b

and that a random gene from c is IBD with a random

gene from d.

Recursive equations for generalized kinship

coefficients
abcΦ ,

abcd
Φ , and

,ab cd
Φ are proposed by

Karigl
12

. For example, the generalized kinship

coefficient for three individuals,
abcΦ , is expressed as

follows.

1
2 ()

abc fbc mbc
Φ = Φ + Φ if a is not an ancestor of b or c (1.1)

1
2 ()

aab ab fmb
Φ = Φ + Φ if a is not an ancestor of b (1.2)

 1
4 (1 3)

aaa fm
Φ = + Φ (1.3)

where f and m are the father and the mother of a,

respectively, and 0abcΦ = if there is no common

ancestor of a, b, and c.

3.3. Path-Counting Formula

The approaches for computing the kinship coefficient

ab
Φ are the iterative approach

12
 and the path-counting

approach
17

. The recursive formulas for
ab

Φ used in the

iterative approach
12

 are:.

30

1
2 ()

ab fb mb
Φ = Φ + Φ if a is not an ancestor of b (1.4)

 1
2 (1)aa fmΦ = + Φ (1.5)

where f and m are the father and the mother of a,

respectively, and 0abΦ = if there is no common

ancestor of a and b. The iterative method exhaustively

traverses the ancestors of a and b looking for common

ancestors; when it finds them, it also recursively

calculates each ancestor’s inbreeding.

The path-counting approach is Wright’s formula
17

:

 (,) (,) 1
1

2() [1 ()]P A a P A bL L

ab

A P

INC A
+ +

Φ = +∑∑ (1.6)

where A is a common ancestor of a and b, LP(A, a) is the

length of a path from A to a, LP(A, b) is the length of a

path from A to b, and INC(A)=
fmΦ is the inbreeding

coefficient of A. Paths from a to A to b that do not pass

through the same individual more than once are

identified and the probability of a gene being IBD is

based on the number and length of these paths, modified

by the common ancestor’s own inbreeding.

4. PATH-COUNTING FORMULAS FOR
GENERALIZED KINSHIP
COEFFICIENTS

The recursive equations for generalized kinship

coefficients were described in section 3.2. To make the

computation of identity coefficients feasible for large

pedigrees, we propose a set of path-counting formulas

for generalized kinship coefficients. In this work, we

will focus on showing how to generalize the path-

counting formula for calculating the generalized kinship

coefficient for three individuals (
abc

Φ).

4.1. Terminology and Definitions

The following terminology and definitions for path level

concepts will be utilized in presenting our path-counting

formula for
abc

Φ .

Triple-common ancestor: Given three individuals a, b

and c, if A is a common ancestor of the three

individuals, then we call A a triple-common ancestor of

a, b and c.

Double-common ancestor: Given three individuals a, b

and c, if D is a common ancestor of two of the three

individuals, but it’s not the common ancestor of the 3
rd

individual, then we say that D is a double-common

ancestor of a, b and c.

P(A,a) denotes the set of all possible paths from A to a,

where the paths can only traverse edges in the direction

of parent to child such that (,)P A a ≠ ∅ if and only if A

is an ancestor of a. PAa denotes a particular path from A

to a, where (,)
Aa

P P A a∈ . Let I(PAa) be the set of

individuals on PAa.

Path-Triple denoted as <PAa, PAb, PAc>,

where (,)
Aa

P P A a∈ , (,)
Ab

P P A b∈ , (,)
Ac

P P A c∈ .

Shared individual(s): The set of shared individual(s)

between two paths PAa and PAb, denoted as

2 (, ,) () () { }
Aa Ab Aa Ab

S A P P I P I P A= ∩ − , is non-empty if both

PAa and PAb pass through a common set of individuals

(excluding A). Likewise, the set of shared individual(s)

among three paths PAa, PAb, and PAc is denoted as

3(, , ,) () () () { }
Aa Ab Ac Aa Ab Ac

S A P P P I P I P I P A= ∩ ∩ − .

Crossover & Overlap individual(s):

If
2 (, ,)Aa Abs S A P P∈ (e.g. a double-common ancestor),

we call s a crossover individual with respect to PAa and

PAb if the two paths pass through different parents of s

(i.e. one path passes through the mother and one passes

through the father). On the other hand, if PAa and PAb

pass through same parent of s, then we call s an overlap

individual with respect to PAa and PAb.

Overlap Path: If s is an overlap individual with respect

to PAa and PAb, then both PAa and PAb pass through the

same parent-child edge (i.e. both mother or both father)

and this edge is called an overlap edge. If this parent of

s, denoted by p, is also an overlap individual on both

paths, then there is an overlap edge regarding p as well.

These two overlap edges are consecutive with respect to

PAa and PAb. All consecutive edges constitute a path and

this path is called an overlap path. If p is not an overlap

individual, then s is simply a crossover individual and

there is no overlap path. However, if the overlap path

extends all the way to the triple common ancestor A, we

instead call it a root overlap path. The length of a path-

triple <PAa, PAb, PAc> is denoted as
Aa Ab Ac<P , P , P >L .

Computing the length of a path-triple is given in the next

section.

4.2. Path-Counting Formula for
abc

Φ

Given a path-triple, we use the logic in Figure 3 to

decide if a path-triple is counted toward the kinship

value or rejected and the traversal through this diagram

determines which case the path-triple belongs to.

Identifying the case for a path-triple involves processing

crossover, overlap, and shared individuals among three

paths.

31

Start:
Processing a

path triple

Shared
between
paths?

More shared
individuals?

Reject
Triple

Find shared
individuals

Accept
Triple

Process a
shared individual

No

Crossover?

No

Yes

Overlap
reaches triple

common
ancestor?

Yes

No

Yes

No3

2

Has shared
individuals? Yes

Fig. 3. Processing a path-triple

Fig. 4. Six cases with respect to a path-triple

2 : , ,Aa Ab Ac

A s e t a

Case P P P A d f t b

A c

→ → → →


< >= → → → →
 →

where t is a crossover individual.

A

s

f

c

e

t

b a

d

3 : , ,Aa Ab Ac

A s e t a

Case P P P A s e t b

A c

→ → → →


< >= → → → →


→

where t is an overlap individual and

 the overlap path is a root overlap path.

4 : , ,Aa Ab Ac

A s e t a

Case P P P A s f t b

A c

→ → → →


< >= → → → →
 →

 where t is a crossover individual; s is an

overlap individual and the overlap path is

 a root overlap path.

.

5 : , ,Aa Ab Ac

A c e t a

Case P P P A c e t b

A c

→ → → →


< >= → → → →


→

 where c is a shared indiviudal among three

 paths.

6 : , ,Aa Ab Ac

A c e t a

Case P P P A s e t b

A c

→ → → →


< >= → → → →
 →

where t is is an overlap individual and

 the overlap path is not a root overlap path.

1: , ,
Aa Ab Ac

A s e t a

Case P P P A d b

A c

→ → → →


< >= → →


→

Accept Cases 1-4

Reject Cases 5-6

<P , P , P > <P , P , P >Aa Ab Ac Aa Ab Ac

Aa Ab Ac Aa Ab Ac

Aa Ab Ac Aa Ab Ac

2 2
1 1

2 2

A <P , P , P > 1 <P , P , P > 3
<P , P , P > 2 <P , P , P > 4

() [1 3* ()] () [1 ()]
L L

abc

Case or Case or
Case Case

INC A INC A
+ +

∈ ∈

∈ ∈

 
 

Φ = + + + 
 
 

∑ ∑ ∑ (1.7)

According to Figure 3, we categorize all possible

cases regarding a path-triple to 6 cases, and an example

for each case is shown in Figure 4. Four of them are

accept cases (1-4), in which case, they will contribute to

the computation of
abc

Φ . The other two cases are reject

cases (5-6), and the path-triple does not contribute to the

compuation of
abc

Φ . A detailed description follows.

Case 1:
3 (, , ,)S A a b c = ∅ and no shared individual

between any two of the three paths.

Case 2: only crossover(s) exist between any two of the

three paths.

Case 3: only overlap(s) exist between any two of the

three paths, but the overlap path is a root overlap path.

Case 4: both crossover(s) and overlap(s) exist between

any two of the three paths, but the overlap path is a root

overlap path.

Case 5:
3 (, , ,)S A a b c ≠ ∅ .

Case 6: overlap exists between any two of the three

paths, but the overlap path is not a root overlap path.

Now, we can formally introduce a path-counting

formula for
abc

Φ (1.7) where A is a triple-common

ancestor of a, b and c, and ()INC A is the inbreeding

coefficient of A.

32

Intuitively, case 1 and case 2 are simple triple-

common ancestor paths to A (as in eq. 1.3), case 3 and

case 4 are paths going through a double-common

ancestor D which reduce to the kinship between A and D

plus the distance to D (as in eq. 1.5), while case 5 and

case 6 are the equivalents to traditional overlap for

calculating
ab

Φ by the path counting formula.

To utilize the equation (1.7) for computing
abc

Φ , we

need a method to calculate the length of a path-

triple
Aa Ab Ac<P , P , P >L . Let

AaP
L denote the total number of

parent-child edges in PAa. Then
Aa Ab Ac<P , P , P >L is computed

as follows.

Aa Ab Ac

Aa Ab Ac

Aa Ab Ac As

P P P

<P , P , P >

P P P P

1& 2

3 & 4

L L L for case
L

L L L L for case

+ +
= 

+ + −

 (1.8)

where s is an overlap individual and the overlap path is a

root overlap path.

The path-counting formulas for
abcd

Φ and
,ab cdΦ can

be formulated using the approach given above for
abc

Φ .

For the rest of this paper, we focus on the computation

of the generalized kinship coefficient for three

individuals. The generalized kinship coefficients can be

then directly utilized for the computation of identity

coefficients.

5. CALCULATING abcΦ USING
NODECODES

In this section, we present an efficient and scalable

NodeCodes-based scheme for our path-counting

formula, motivated by the effectiveness of NodeCodes

in conjunction with Wright’s formula for inbreeding

coefficient
4
.

5.1. NodeCodes

NodeCodes is a graph encoding scheme originally

proposed for encoding single source directed graphs
2,16

,

which was later adapted to encode pedigree data
5
.

Pedigree data is represented by a directed acyclic graph,

where the nodes represent individuals and directed

edges represent parent-child relationships. Using

NodeCodes, each node is assigned labels which are

sequences of integers and delimiters. The integers

represent the sibling order, and the delimiters denote the

generations as well as indicating the gender of the node.

We use “.”, “,”, and “;” to denote female, male or

unknown respectively.

First the progenitors (nodes with in-degree 0) are

labeled (we may consider adding a virtual root r and

making all progenitors children of r). For each node u in

the graph, the set of NodeCodes of u, denoted NC(u),

are assigned using a depth-first-search traversal starting

from the source node as follows:

• If u is the virtual root node r, then NC(u) contains

only one element, the empty string.

• Let u be a node with NC(u), and v0, v1, … vk be u’s

children in sibling order, then for each x in NC(u), a

code xi* is added to NC(vi), where 0 ≤ i ≤ k, and *

indicates the gender of the individual represented by

node vi.

An example of NodeCodes is shown in Figure 1b

using the pedigree from Figure 1a converted to a graph

of parent-child edges.

5.2. Calculating
ab

Φ and ()INC A

According to our path-counting formula (1.7), the

calculation of
abc

Φ requires the computation of ()INC A

as a final step. In our work, we utilize the efficient

NodeCodes-based method described by Elliott
4
 to

compute () fmINC A = Φ . Note that, inbreeding coefficient

of an individual is actually the kinship coefficient for the

individuals’ parents. As a result, the method for

computing inbreeding coefficient described by Elliott
4

can be utilized to calculate
ab

Φ in general.

5.3. Calculating
abc

Φ

The basic idea of the path counting formula for
abc

Φ is

to identify the common ancestors of a, b and c and sum

their contributions to
abc

Φ . Note that, the NodeCodes of

an individual i effectively capture all ancestors that pass

genes to i. Thus, given the NodeCodes of three

individuals a, b, and c, we can identify all triple-

common ancestors of a, b, and c via longest common

prefix matching and each NodeCode from a, b, and c

containing the shared prefix represents a path to the

shared individual. We process each triple-common

ancestor at path-level to form path-triples by taking the

cross products of the sets of prefix-matched NodeCodes

from a, b, and c to obtain all path-triples to be processed

for that common ancestor. For each path-triple, we

identify crossover, overlap, and shared individuals

among three paths, and then utilize the logic described

in Figure 3 to decide the triple’s case and thus how it

should contribute to the sum according to equation

(1.7). This process is repeated for each such shared

NodeCode prefix which is a Longest Common Prefix

(LCP) for matching (which will be defined shortly) to

obtain the final sum as the value for
abc

Φ . The general

33

outline for calculating
abc

Φ using NodeCodes is

presented in algorithm Generalized-Kinship-Coefficient-

abcΦ .

 Algorithm Generalized-Kinship-Coefficient-
abc

Φ

Input: NodeCodes NC(a), NC(b), and NC(c)

Output:
abc

Φ

1. Initialize 0abcΦ = .

2. Identify a set of triple-common ancestors of a, b and c.

3. For each common ancestor A

a. Find a set of <PAa, PAb, PAc>.

b. For each <PAa, PAb, PAc>

- Process-Path-Triple (<PAa, PAb, PAc>).

- If <PAa, PAb, PAc>∈Case 1 or Case 2 ,

then <P , P , P >Aa Ab Ac
2

1
2var () [1 3* ()]

L
INC A

+

= + .

- If <PAa, PAb, PAc>∈Case 3 or Case 4,

then <P , P , P >Aa Ab Ac
2

1
2var () [1 ()]

L
INC A

+

= + .

- Otherwise, var 0= .

- varabc abcΦ = Φ + .

4. Return
abc

Φ .

Algorithm Process-Path-Triple

Input: <PAa, PAb, PAc>

Output: the case that <PAa, PAb, PAc> fits in

1. Initialize crossover=false, overlap=false.

2. Identify a set of shared individuals between any two of

the three paths, and among all three paths.

3. If no shared indiviudal,

 then return <PAa, PAb, PAc>∈Case 1.

4. For each shared individual si

- If si is shared among all three paths,

 then return <PAa, PAb, PAc>∈Case 5.

- If si is a crossover individual, then crossover=true.

- Else, check if the overlap path is a root overlap path.

- If it is a root overlap path, then overlap=true.

- Otherwise, return <PAa, PAb, PAc>∈Case 6.

5. If crossover=true && overlap=false,

 then return <PAa, PAb, PAc> ∈Case 2.

6. If crossover=false && overlap=true,

 then return <PAa, PAb, PAc>∈Case 3.

7. If crossover=true && overlap=true,

 then return <PAa, PAb, PAc>∈Case 4.

In this algorithm, step 2 and step 3.a are based on

finding the LCP for matching and then find the unique

set of shared individuals by treating the prefixes as

NodeCode and retrieving individual identifiers by the

NodeCodes to eliminate duplicates. Step 3.b calls the

algorithm Process-Path-Triple, which implements the

logic presented in Figure 3, to return path-triple’s case.

In this procedure, we identify crossover, overlap

individuals, and root overlap paths, which are the critial

steps for processing a path-triple. We will explain them

in detail.

Longest Common Prefix (LCP) for matching: Let X,

Y, and Z be (sub)sets of the NodeCodes for a, b, and c.

Then p is the longest common prefix for matching X, Y,

and Z, if there is no p’ where p is a prefix of p’, and p’ is

a common prefix of all xi in X, all yi in Y, and all zi in

Z.

Identifying triple-common ancestors: We use the

notation p=LCP(X,Y,Z) to denote that p is the LCP for

matching sets X, Y, and Z. Given NodeCodes NC(a),

NC(b), and NC(c), identifying triple-common ancestors

requires matching NC(a), NC(b), and NC(c) having the

longest common prefix for matching sets.

Identifying path-triples: Let A be a triple-common

ancestor of a, b, and c, pi, 1≤i≤k, be the NodeCodes of A

such that pi=LCP(Xpi,Ypi,Zpi) for some nonempty subsets

Xpi, Ypi, and Zpi of NC(a), NC(b), and NC(c),

respectively. Let p be any one of such pi’s. Then, the set

of path-triple from A to a, b, and c can be represented as

PT(A, p)={(x,y,z)| p=LCP(Xp, Yp ,Zp) and x∈ Xp , y ∈

Yp , and z ∈ Zp }.

Identifying crossover and overlap individuals: If s is

a shared individual between two paths PAa and PAb, then

there must be a NodeCode ()
Aa

n NC s∈ that is proper

prefix of PAa and a NodeCode ()
Ab

n NC s∈ that is

proper prefix of PAb. We call s a crossover individual

with respect to PAa and PAb if nAa and nAb pass through

different parents of s (i.e. one code passes through the

mother and one passes through the father, identified by

gender delimiters). However, if nAa and nAb pass

through same parent of s, then s is an overlap individual

with respect to PAa and PAb.

Identifying the root overlap path: If s is an overlap

individual with respect to PAa and PAb, then there must

be a NodeCode ()Aan NC s∈ that is proper prefix of PAa

and a NodeCode ()Abn NC s∈ that is proper prefix of

PAb. We identify an overlap path with respect to s as a

root overlap path if nAa is equal to nAb; otherwise, it is

not a root overlap path.

5.4. Computing
aab

Φ and
aaa

Φ

When calculating the condensed identity coefficients,

we also need to directly calculate
aab

Φ and
aaa

Φ .

However, these cases can be transformed and reduced

to
abc

Φ and
ab

Φ , respectively, which can directly be

34

computed according to (1.7) and Wright’s formula

(1.6).

For
aab

Φ , assume a has two virtual children x and y,

and we first compute
xybΦ . According to the recursive

formula (1.1), we get 21
2() *xyb aabΦ = Φ , which can be

rewritten as 4.0*
aab xyb

Φ = Φ . To evaluate this using

NodeCodes, we can artificially construct the NodeCodes

for x and y based on the NodeCodes for a. With

()NC x and ()NC y , we can apply the formula (1.7) to

compute
xybΦ .

For
aaa

Φ , we evaluate it by substituting equation

(1.3). Again, finding the inbreeding of a is done using

the NodeCodes-based method proposed by Elliott
4
.

Thus, we can now fully compute the generalized kinship

coefficient for two or three individuals.

6. EXPERIMENTS

In this section, we show the efficiency of our path-

counting method using NodeCodes for
abc

Φ by making

comparisons with the performance of a recursive method

proposed by Karigl
12

. We examine the performance of

abc
Φ using data from the Cleveland Clinic’s Familial

Polyposis Registry
9
 and synthetic pedigrees

4
. Results

for
ab

Φ are equivalent to finding the inbreeding

coefficient as in Elliott’s work
4
, where experiments

showed speed improvements of 3-9 times.

6.1. Experimental Setup

The Cleveland Clinic’s Familial (CCF) Polyposis

Registry
9
 database contains pedigrees of 750 families

and 11,350 patient histories recorded in the past twenty-

five years at CCF. We performed experiments on this

dataset using 654 pedigrees containing 8,345 individuals,

with the largest pedigree consisting of 118 individuals

spanning 8 generations. In order to test scalability of

our method, we used twelve synthetic pedigrees
4
 ranged

from 77 individuals spanning 3 generations for the

smallest to 195,197 individuals spanning 19 generations

for the largest. The data is stored in a SQLServer

database.

We compared the execution time required to

calculate
abc

Φ by the recursive method described by

Karigl
 12

 and the path-counting method using

NodeCodes. We analyzed the effects of pedigree size (#

individuals), the depth of individuals in the pedigree (the

longest path between the individual and a progenitor),

and the kinship coefficient value.

6.2. Experimental Results

In the first experiment, 500 random triples were selected

from each of our 12 synthetic pedigrees. For each triple,

the query was run on cold cache starting with no

memoization data to show how the cost of calculating

kinship increases with pedigree size for the recursive

algorithm and the path-counting method using

NodeCodes. We refer to the recursive method as

KinshipIter and we refer to the path-counting method

using NodeCodes as KinshipNC.

Effect of Pedigree Size on Average Query Time in

Synthetic Pedigrees (500 random triples each)

0

500

1000

1500

2000

2500

3000

77 18
1

38
3

76
9

1,
55
8

3,
10
5

6,
17
4

12
,3
51

24
,6
67

49
,7
61

98
,3
28

19
5,
19
7

#Individuals in Pedigree

A
v

e
ra

g
e

 Q
u

e
ry

 T
im

e
 (

m
s)

KinshipIter

KinshipNC

Fig. 5. Effect of pedigree size on average query time in synthetic

pedigrees

Effect of Depth on Average Query Time in Largest

Synthetic Pedigree (100 random triples each)

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Depth of Individuals in Pedigree

A
v

e
ra

g
e

 Q
u

e
ry

 T
im

e
 (

m
s) KinshipIter

KinshipNC

Fig. 6. Effect of depth on average query time in largest synthetic

pedigree

Figure 5 shows the average time per query for each

pedigree. As can be seen, the average time per query

grew increasingly larger for KinshipIter method

compared to KinshipNC as the pedigree size increased,

from a comparable amount of time on the small

pedigrees (<800 individuals) to 2.2-3.1 times slower per

query than KinshipNC on the larger pedigrees (>1200

individuals).

35

In our next experiment, we examined the effect of

the depth of the individual in the pedigree (number of

steps in the longest NodeCode) on the query time. For

each depth, we generated 100 random triples from the

largest synthetic pedigree. Figure 6 shows how the

average time per query grows as the individual’s depth

increases. We can see that KinshipNC scales better than

KinshipIter, 1.7-2.3 times faster than KinshipIter for

large pedigrees. The reason for this is that KinshipNC

can skip intermediate generations and can jump straight

to the common ancestors.

Effect of Kinship Coefficient Value on Query Time in

Largest Synthetic Pedigree (1000 random triples)

0

500

1000

1500

2000

2500

3000

3500

4000

4.
55
E-
13

1.
14
E-
12

4.
73
E-
11

1.
09
E-
10

8.
73
E-
09

1.
54
E-
08

2.
09
E-
07

1.
41
E-
06

1.
53
E-
05

1.
26
E-
04

1.
10
E-
03

1.
56
E-
02

1.
04
E-
01

1.
31
E-
01

2.
07
E-
01

2.
50
E-
01

Kinship Coefficient Value

A
v

e
ra

g
e

 Q
u

e
ry

 T
im

e
 (

m
s) KinshipIter

KinshipNC

Fig. 7. Effect of kinship coefficient value on average query time in

largest synthetic pedigree

Kinship Coefficient Value Distribution

on 1000 Random Triples

0

20

40

60

80

100

120

140

160

180

4.
55
E-
13

1.
14
E-
12

4.
73
E-
11

1.
09
E-
10

8.
73
E-
09

1.
54
E-
08

2.
09
E-
07

1.
41
E-
06

1.
53
E-
05

1.
26
E-
04

1.
10
E-
03

1.
56
E-
02

1.
04
E-
01

1.
31
E-
01

2.
07
E-
01

2.
50
E-
01

Kinship Coefficient Value

N
u

m
b

e
r

o
f

T
ri

p
le

s

Fig. 8. Kinship coefficient value distribution for triples in Fig. 7

Next, we generated 1,000 random triples from the

largest synthetic pedigree and investigated the effect of

the kinship coefficient value on query time. For the

kinship coefficient value, we expected that individuals

with larger kinship coefficients would be more inbred

and have more NodeCodes, causing KinshipNC to suffer

slightly. Figure 7 shows the average query time for each

distinct kinship coefficient value, and we can see that for

most values of the kinship coefficient, KinshipNC

outperformed KinshipIter by 4.9-7.3 times. As expected,

for a few of the highest kinship coefficient values, we

see slightly less improvement with respect to the

performance of KinshipNC over that of KinshipIter

(only 2.5 times faster). Figure 8 shows the distribution

of the kinship coefficient value for the triples used in

Figure 7. It clearly shows that the low-range values

account for most of the triples, and for those values,

KinshipNC outperforms KinshipIter.

Finally, we compared the results from our

experiment on all the real pedigrees, which are all

relatively small in comparison; the results are shown in

Table 1. We randomly picked 43,862 triples on the real

pedigrees. According to the ratio in the table, we can tell

the KinshipNC is around 8.90 times faster than

KinshipIter.

Table 1. Performance results on real data

 KinshipIter KinshipNC Ratio

Average Time Elapsed (ms) 29.17 3.28 8.90

Average SQL Queries Run 26.10 3.15 8.30

7. CONCLUSION

We have proposed a path-counting formula (PCF) for

generalized kinship coefficient by generalizing Wright’s

path-counting method for three individuals. Based on

our PCF, we presented an efficient and scalable method

using NodeCodes for the computation of generalized

kinship coefficient. We also implemented and tested our

method using both real and synthetic data of various

sizes to test scalability. Experimental results show that

the use of NodeCodes for PCF achieves 2.2-8.9 times

faster performance for computing generalized kinship

coefficient on pedigree data, especially for real

pedigrees as well as synthetic pedigrees of sizes between

800 and 200,000. Our future work includes (i)

generalizing PCF for remaining generalized kinship

coefficients, (ii) developing a scalable method for

calculating identity coefficients utilizing the PCF and an

encoding of paths such as NodeCodes.

Acknowledgement

We would like to thank Elena Manilich, Dr. James

Church, and the Cleveland Clinic’s Familial Polyposis

Registry
9
 for kindly allowing us to use their data for this

study. This work is partially supported by the US

National Science Foundation grants DBI-0218061, ITR-

0312200 and CNS-0551603.

36

References

 1. Boyce AJ. Computation of inbreeding and kinship

coefficients on extended pedigrees, Journal of

Heredity 1983; 74:400-404.

 2. Bozkaya T, Balkir N, Lee T. Efficient Evaluation of

Path Algebra Expressions. CWRU Tech. Report,

1997.

 3. Cotterman CW. A calculus for statistico-genetics.

Unpublished Ph.D thesis, Ohio State University,

Columbus, Ohio. Reprinted in Ballonoff, P.

(Ed.). Genetics and Social Structure, Dowden,

Hutchinson & Ross, Stroudsburg, P.A., 1974.

 4. Elliott B, Akgul SF, Mayes S, Ozsoyoglu ZM.

Efficient Evaluation of Inbreeding Queries on

Pedigree Data. In Proceedings of SSDBM 2007; 9:

3-12.

 5. Elliott B, Akgul SF, Ozsoyoglu ZM, Manilich E. A

Framework for Querying Pedigree Data. In

Proceedings of SSDBM 2006; 18:71-80.

 6. Gillois M. La relation d'identité en génétique. Ann

Inst Henri Poincare B 2 :1-94

 7. Glosary of Genetic Terms, National Human

Genome Research Institute

 http://www.genome.gov/glossary.cfm?key=pedigree

 8. Harris DL. Genotypic covariances between inbred

relatives. Genetics 50: 1319-1348.

 9. http://www.clevelandclinic.org/registries/

 10. Jacquard A. The Genetic Structure of Populations.

Springer-Verlag, New York, 1974.

11. Jacquard A. Logique du calcul des coefficients

d’identite entre deux individuals. Population

(Paris), 1966 ; 21: 751-776.

12. Karigl G. A recursive algorithm for the calculation

of identity coefficients. Ann Hum Genet

1981; 45:299–305.

13. Lange K. Mathematical and Statistical Methods for

Genetic Analysis. Springer-Verlag, NY. 2002.

14. Malecot G. Les mathématique de l'hérédité,

Masson, Pairs. Translated edition: The Mathematics

of Heredity, Freeman, San Francisco, 1969.

15. Pedigree and Population Resource: Utah Population

Database. http://www.hci.utah.edu/groups/ppr/

16. Sheng L, Ozsoyoglu ZM, Ozsoyoglu G. A Graph

Query Language and Its Query Processing. In

Proceedings of ICDE Conference, 1999.

17. Wright S. Coefficients of Inbreeding and

Relationship. The American Naturalist, Vol. 56,

No. 645, 1922.

