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With the rapidly expanding field of medical genetics and genetic counseling, genealogy information is becoming increasingly abundant. 

An important computation on pedigree data is the calculation of identity coefficients, which provide a complete description of the 

degree of relatedness of a pair of individuals. The areas of application of identity coefficients are numerous and diverse, from genetic 

counseling to disease tracking, and thus, the computation of identity coefficients merits special attention. However, the computation of 

identity coefficients is not done directly, but rather as the final step after computing a set of generalized kinship coefficients. In this 

paper, we first propose a novel Path-Counting Formula for calculating generalized kinship coefficients, which is motivated by Wright’s 

path-counting method for computing the inbreeding coefficient for an individual. We then present an efficient and scalable scheme for 

calculating generalized kinship coefficients on large pedigrees using NodeCodes, a special encoding scheme for expediting the 

evaluation of queries on pedigree graph structures. We also perform experiments for evaluating the efficiency of our method, and 

compare it with the performance of the traditional recursive algorithm for three individuals. Experimental results demonstrate that the 

resulting scheme is more scalable and efficient than the traditional recursive methods for computing generalized  kinship coefficients.

                                                           
* Corresponding author. 

1.   INTRODUCTION 

In human genetics, pedigree diagrams are utilized to 

trace the inheritance of a specific trait, abnormality, or 

disease, calculate genetic risk ratios, identify individuals 

at risk, and facilitate genetic counseling. A sample 

pedigree diagram is shown in Figure 1a. Pedigrees are 

hierarchical hereditary structures and are typically 

represented as directed acyclic graphs. More 

specifically, a pedigree can be defined as “a simplified 

diagram of a family’s genealogy that shows family 

members’ relationships to each other and how a specific 

trait, abnormality, or disease has been inherited”
7
. 

Generally speaking, genetic counseling is the process by 

which patients or relatives, at risk of an inherited trait or 

disease, are advised of the consequences and nature of 

the trait or disease, the probability of developing or 

transmitting it, and the options open to them in 

management and family planning in order to prevent, 

avoid or ameliorate it. In order to calculate genetic risk 

ratios and identify individuals at risk, we need a measure 

of the degree of relatedness of two or more individuals. 

It is worthwhile to mention that calculating genetic risk 

ratios allows mainstream epidemiologists to leverage 

genetics for the study of diseases. In addition to the 

study of qualitative diseases, many developments in 

quantitative genetics also require knowledge of the 

probability that a pair of relatives have specified 

genotypes. Calculation of correlations between relatives 
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Fig. 1a. Small pedigree diagram 
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Fig. 1b. Pedigree as a graph with NodeCodes 
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forms the foundation of classical biometrical analyses of 

quantitative traits such as height, weight, and cholesterol 

level
10

. In summary, making full use of genealogy 

information by measuring the degree of relatedness of a 

pair of individuals is a significant and practical issue in 

modern genetics. 

Note that all measures of relatedness are based on 

the concept of identical by descent. Two genes are 

identical by decent (IBD) if one is a physical copy of the 

other or if they are both physical copies of the same 

ancestral gene. This concept is primarily due to 

Cotterman
3
 and Malecot

14
 and has been successfully 

applied to many problems in population genetics. The 

simplest measure of relationship between two 

individuals a and b is their kinship coefficient
abΦ . The 

kinship coefficient 
abΦ  is the probability that a gene 

selected randomly from a and a gene selected randomly 

from the same autosomal locus of b are IBD. While 

useful in many applications, the kinship coefficient does 

not completely summarize the genetic relation between 

two individuals. For instance, siblings and parent-

offspring pairs share a common kinship coefficient of ¼. 

To better discriminate between different types of “pairs 

of relatives”, identity coefficients were introduced by 

Gillois
6
, Harris

8
, and Jacquard

11
.  Considering four 

genes of two individuals on a fixed autosomal locus, 

there are 15 possible IBD relations due to the fact that 

identity may exist within as well as between individuals. 

A notable characteristic of identity coefficients is that 

they provide a complete description of the probability of 

identity by descent between single loci of two 

individuals. Hence, this unique feature of identity 

coefficients has resulted in their application in a diverse 

range of fields. This includes the calculation of risk 

ratios for qualitative disease, the analysis of quantitative 

traits, genetic counseling in medicine, and wider studies 

of the genetic structure of populations. 

A recursive algorithm for the calculation of identity 

coefficients proposed by Karigl
12

 has been known for 

some time. This method requires that one calculate  

a set of generalized kinship coefficients, from which  

one can obtain the identity coefficients via a linear 

transformation. Although this recursive approach works 

well for small to moderate-size pedigrees, it can take 

impractical amounts of time when applied to very large 

pedigrees, particularly when coefficients are desired for 

many pairs of individuals. As data collection and  

storage technology are becoming more readily available 

at a lower cost, the size and variety of usable pedigree 

data has been increasing at a high rate. There are  

already large, heavily used pedigree data collections 

such as the Utah Population Database
15

 with 1.6 million 

genealogy records.  Thus, there is an urgent need for 

scalable techniques for efficiently calculating identity 

coefficients on large pedigrees due to both increasing 

volume of available pedigree data, and increasing use of 

pedigree data analysis in medical genetics for hereditary 

diseases.  

In this paper, we propose a novel path-counting 

formula for the calculation of generalized kinship 

coefficients, motivated by Wright’s path-counting 

formula for the computation of inbreeding coefficients. 

It has been previously shown that inbreeding coefficient 

queries can be efficiently evaluated using Wright’s path-

counting formula in conjunction with the NodeCodes 

encoding scheme
4
. Thus, once we have defined the path-

counting formula, we can utilize NodeCodes and 

develop an efficient and scalable scheme for calculating 

the generalized kinship coefficients on very large 

pedigrees. We also present experimental results 

evaluating the performance of our strategy for 

calculating generalized kinship coefficients. 

The main contributions of our work are as follows: 

I.  A novel path-counting formula for the calculation 

of generalized kinship coefficients. 

II.  An efficient and scalable scheme for calculating 

the generalized kinship coefficients and identity 

coefficients on large pedigrees using NodeCodes. 

III.  Experimental results demonstrating significant 

performance gains for calculating the generalized 

kinship coefficients for three individuals versus the 

traditional recursive algorithms. 

2.   RELATED WORK 

There are two main approaches for computing kinship 

coefficients: a path-counting approach and an iterative 

approach
1
. The path-counting approach requires the 

detection of common ancestors and the summation of 

their contributions to the kinship coefficient. The 

iterative approach does not require the identification of 

paths through pedigrees. It begins with an initial group 

of individuals, and proceeds through the pedigree, 

computing successively the kinship between individuals 

who are descended from the initial population.  The 

path-counting method has minimal storage requirements, 

but with some penalty in terms of computing time. The 

iterative approach is feasible to compute kinship 

coefficients for many individuals only if the kinship 

matrix is relatively sparse. 
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Among previous studies concerning the 

computation of identity coefficients, Karigl presented a 

description of identity coefficients and generalized 

kinship coefficients and proposed a technique that 

calculates the identity coefficient via a series of 

recursive calls to first calculate the generalized kinship 

coefficients and then a linear transformation is applied
12

. 

The generalized kinship coefficients include kinship 

coefficients for two, three, four, and two pairs of 

individuals. The basic problem is that each generalized 

kinship coefficient requires a separate recursion through 

the pedigree, which can be very time-consuming if the 

pedigree is very deep. Thus, the recursive algorithm can 

be infeasible when applied to very large pedigrees, 

particularly when coefficients are desired for many pairs 

of individuals.  

Wright’s formula
17

, for computing the inbreeding 

coefficient of an individual is a typical example of path-

counting formula. Utilizing an encoding scheme called 

NodeCodes in conjunction with Wright’s formula, an 

efficient method for computing inbreeding coefficient is 

proposed by Elliott
4
.  This paper was motivated by the 

question that whether we can extend the benefit of 

utilizing encoding schemes in calculation of the 

inbreeding coefficient to the computation of generalized 

kinship coefficients for more than 2 individuals.. 

3.   BACKGROUND 

This section describes condensed identity coefficients, 

generalized kinship coefficients, and path-counting 

formulas for standard kinship coefficient in more detail. 

3.1.   Condensed Identity Coefficients 

If we consider four genes of two individuals on a fixed 

autosomal locus, then the 15 possible states can be 

reduced to 9 condensed identity states if we ignore the 

distinction between maternally and paternally derived 

genes. The states range from state 1 in which all four 

genes are IBD to state 9 in which none of the four genes 

are IBD. The probabilities associated with each 

condensed identity state, 
1∆ to

9∆ , are called condensed 

identity coefficients.  The 15 states and their respective 

condensed identity coefficients are shown in Figure 2a. 

The condensed identity coefficients can be 

computed from the generalized kinship coefficients 

(
abΦ , 

abc
Φ ,

abcd
Φ , and 

,ab cd
Φ ) using the linear 

transformation shown in Figure 2b. Hence, we focus on 

the computation of generalized kinship coefficients.  
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Fig. 2a. The 15 possible identity states for individuals A and B, grouped 

by their 9 condensed states. Lines indicate alleles that are IBD. 
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Fig. 2b. Linear transformation to calculate identity coefficients 

3.2.   Condensed Identity Coefficients 

In addition to the kinship coefficients 
abΦ for two 

individuals, there is a set of generalized kinship 

coefficients for three, four, and two pairs of individuals, 

which are denoted as 
abc

Φ , 
abcd

Φ , and 
,ab cd

Φ , 

respectively. 
abcΦ  (or 

abcd
Φ ) is the probability that three 

(or four) randomly chosen genes, one from each 

individual, are IBD. 
,ab cd

Φ  is the probability that a 

random gene from a is IBD with a random gene from b 

and that a random gene from c is IBD with a random 

gene from d.  

Recursive equations for generalized kinship 

coefficients 
abcΦ ,

abcd
Φ , and 

,ab cd
Φ  are proposed by 

Karigl
12

. For example, the generalized kinship 

coefficient for three individuals,
abcΦ , is expressed as 

follows. 

1
2 ( )

abc fbc mbc
Φ = Φ + Φ  if a is not an ancestor of b or c (1.1) 

1
2 ( )

aab ab fmb
Φ = Φ + Φ  if a is not an ancestor of b (1.2) 

 1
4 (1 3 )

aaa fm
Φ = + Φ                                                      (1.3) 

where f and m are the father and the mother of a, 

respectively, and 0abcΦ =  if there is no common 

ancestor of a, b, and c.  

3.3.   Path-Counting Formula 

The approaches for computing the kinship coefficient 

ab
Φ are the iterative approach

12
 and the path-counting 

approach
17

. The recursive formulas for
ab

Φ  used in the 

iterative approach
12 

 are:. 
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1
2 ( )

ab fb mb
Φ = Φ + Φ  if a is not an ancestor of b  (1.4) 

 1
2 (1 )aa fmΦ = + Φ                                                 (1.5) 

where f and m are the father and the mother of a, 

respectively, and 0abΦ =  if there is no common 

ancestor of a and b. The iterative method exhaustively 

traverses the ancestors of a and b looking for common 

ancestors; when it finds them, it also recursively 

calculates each ancestor’s inbreeding. 

The path-counting approach is Wright’s formula
17

:  

 ( , ) ( , ) 1
1

2( ) [1 ( )]P A a P A bL L

ab

A P

INC A
+ +

Φ = +∑∑  (1.6) 

where A is a common ancestor of a and b,  LP(A, a) is the 

length of a path from A to a, LP(A, b)  is the length of a 

path from A to b, and INC(A)= 
fmΦ  is the inbreeding 

coefficient of A. Paths from a to A to b that do not pass 

through the same individual more than once are 

identified and the probability of a gene being IBD is 

based on the number and length of these paths, modified 

by the common ancestor’s own inbreeding. 

4.   PATH-COUNTING FORMULAS FOR 
GENERALIZED KINSHIP 
COEFFICIENTS 

The recursive equations for generalized kinship 

coefficients were described in section 3.2. To make the 

computation of identity coefficients feasible for large 

pedigrees, we propose a set of path-counting formulas 

for generalized kinship coefficients. In this work, we 

will focus on showing how to generalize the path-

counting formula for calculating the generalized kinship 

coefficient for three individuals (
abc

Φ ).  

4.1.   Terminology and Definitions 

The following terminology and definitions for path level 

concepts will be utilized in presenting our path-counting 

formula for
abc

Φ . 

Triple-common ancestor: Given three individuals a, b 

and c, if A is a common ancestor of the three 

individuals, then we call A a triple-common ancestor of 

a, b and c. 

Double-common ancestor: Given three individuals a, b 

and c, if D is a common ancestor of two of the three 

individuals, but it’s not the common ancestor of the 3
rd

 

individual, then we say that D is a double-common 

ancestor of a, b and c. 

P(A,a) denotes the set of all possible paths from A to a, 

where the paths can only traverse edges in the direction 

of parent to child such that ( , )P A a ≠ ∅  if and only if A 

is an ancestor of a. PAa denotes a particular path from A 

to a, where ( , )
Aa

P P A a∈ . Let I(PAa) be the set of 

individuals on PAa. 

Path-Triple denoted as <PAa, PAb, PAc>, 

where ( , )
Aa

P P A a∈ , ( , )
Ab

P P A b∈ , ( , )
Ac

P P A c∈ . 

Shared individual(s): The set of shared individual(s) 

between two paths PAa and PAb, denoted as 

2 ( , , ) ( ) ( ) { }
Aa Ab Aa Ab

S A P P I P I P A= ∩ − , is non-empty if both 

PAa and PAb pass through a common set of individuals 

(excluding A). Likewise, the set of shared individual(s) 

among three paths PAa,  PAb,  and PAc is denoted as 

3( , , , ) ( ) ( ) ( ) { }
Aa Ab Ac Aa Ab Ac

S A P P P I P I P I P A= ∩ ∩ − . 

Crossover & Overlap individual(s): 

If
2 ( , , )Aa Abs S A P P∈  (e.g. a double-common ancestor), 

we call s a crossover individual with respect to PAa and 

PAb if the two paths pass through different parents of s 

(i.e. one path passes through the mother and one passes 

through the father).  On the other hand, if PAa and PAb 

pass through same parent of s, then we call s an overlap 

individual with respect to PAa and PAb.  

Overlap Path: If s is an overlap individual with respect 

to PAa and PAb, then both PAa and PAb pass through the 

same parent-child edge (i.e. both mother or both father) 

and this edge is called an overlap edge. If this parent of 

s, denoted by p, is also an overlap individual on both 

paths, then there is an overlap edge regarding p as well. 

These two overlap edges are consecutive with respect to 

PAa and PAb.  All consecutive edges constitute a path and 

this path is called an overlap path. If p is not an overlap 

individual, then s is simply a crossover individual and 

there is no overlap path. However, if the overlap path 

extends all the way to the triple common ancestor A, we 

instead call it a root overlap path. The length of a path-

triple <PAa, PAb, PAc> is denoted as 
Aa Ab Ac<P , P , P >L . 

Computing the length of a path-triple is given in the next 

section. 

4.2.   Path-Counting Formula for
abc

Φ  

Given a path-triple, we use the logic in Figure 3 to 

decide if a path-triple is counted toward the kinship 

value or rejected and the traversal through this diagram 

determines which case the path-triple belongs to. 

Identifying the case for a path-triple involves processing  

crossover, overlap, and shared individuals among three 

paths. 
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Fig. 3. Processing a path-triple 

 

Fig. 4. Six cases with respect to a path-triple 
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where t is an overlap individual and 

 the overlap path is a root overlap path. 

4 : , ,Aa Ab Ac

A s e t a

Case P P P A s f t b

A c

→ → → →


< >= → → → →
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   where t is a crossover individual;  s is an  

overlap individual and the overlap path is 

 a root overlap path. 

. 
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where t is is an overlap individual and 

 the overlap path is not a root overlap path. 
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2 2
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2 2

A <P , P , P > 1 <P , P , P > 3 
<P , P , P > 2 <P , P , P > 4

( ) [1 3* ( )] ( ) [1 ( )]
L L

abc

Case or Case or
Case Case

INC A INC A
+ +

∈ ∈

∈ ∈

 
 

Φ = + + + 
 
 

∑ ∑ ∑  (1.7) 

 

According to Figure 3, we categorize all possible 

cases regarding a path-triple to 6 cases, and an example 

for each case is shown in Figure 4. Four of them are 

accept cases (1-4), in which case, they will contribute to 

the computation of 
abc

Φ . The other two cases are reject 

cases (5-6), and the path-triple does not contribute to the 

compuation of 
abc

Φ . A detailed description follows. 

Case 1: 
3 ( , , , )S A a b c = ∅ and no shared individual 

between any two of the three paths.  

Case 2: only crossover(s) exist between any two of the 

three paths. 

Case 3: only overlap(s) exist between any two of the 

three paths, but the overlap path is a root overlap path. 

Case 4: both crossover(s) and overlap(s) exist between 

any two of the three paths, but the overlap path is a root 

overlap path. 

Case 5: 
3 ( , , , )S A a b c ≠ ∅ . 

Case 6: overlap exists between any two of the three 

paths, but the overlap path is not a root overlap path. 

Now, we can formally introduce a path-counting 

formula for
abc

Φ  (1.7) where A is a triple-common 

ancestor of a, b and c, and ( )INC A is the inbreeding 

coefficient of A.  
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Intuitively, case 1 and case 2 are simple triple-

common ancestor paths to A (as in eq. 1.3), case 3 and 

case 4 are paths going through a double-common 

ancestor D which reduce to the kinship between A and D 

plus the distance to D (as in eq. 1.5), while case 5 and 

case 6 are the equivalents to traditional overlap for 

calculating 
ab

Φ by the path counting formula. 

To utilize the equation (1.7) for computing
abc

Φ , we 

need a method to calculate the length of a path-

triple
Aa Ab Ac<P , P , P >L . Let

AaP
L denote the total number of 

parent-child edges in PAa. Then 
Aa Ab Ac<P , P , P >L  is computed 

as follows. 

Aa Ab Ac

Aa Ab Ac

Aa Ab Ac As

P P P

<P , P , P >

P P P P

1& 2

3 & 4

L L L for case
L

L L L L for case

+ +
= 

+ + −

 (1.8) 

where s is an overlap individual and the overlap path is a 

root overlap path. 

The path-counting formulas for 
abcd

Φ  and
,ab cdΦ can 

be formulated using the approach given above for 
abc

Φ . 

For the rest of this paper, we focus on the computation 

of the generalized kinship coefficient for three 

individuals. The generalized kinship coefficients can be 

then directly utilized for the computation of identity 

coefficients. 

5.   CALCULATING abcΦ  USING 
NODECODES 

In this section, we present an efficient and scalable 

NodeCodes-based scheme for our path-counting 

formula, motivated by the effectiveness of NodeCodes 

in conjunction with Wright’s formula for inbreeding 

coefficient
4
. 

5.1.   NodeCodes 

NodeCodes is a graph encoding scheme originally 

proposed for encoding single source directed graphs
2,16

, 

which was later adapted to encode pedigree data
5
. 

Pedigree data is represented by a directed acyclic graph, 

where the nodes represent individuals and directed 

edges represent parent-child relationships. Using 

NodeCodes, each node is assigned labels which are 

sequences of integers and delimiters. The integers 

represent the sibling order, and the delimiters denote the 

generations as well as indicating the gender of the node. 

We use “.”, “,”, and “;” to denote female, male or 

unknown respectively.  

First the progenitors (nodes with in-degree 0) are 

labeled (we may consider adding a virtual root r and 

making all progenitors children of r). For each node u in 

the graph, the set of NodeCodes of u, denoted NC(u), 

are assigned using a depth-first-search traversal starting 

from the source node as follows:  

• If u is the virtual root node r, then NC(u) contains 

only one element, the empty string. 

• Let u be a node with NC(u), and v0, v1, … vk be u’s 

children in sibling order, then  for each x in NC(u), a 

code xi* is added to NC(vi), where 0 ≤ i ≤ k, and * 

indicates the gender of the individual represented by 

node vi.  

An example of NodeCodes is shown in Figure 1b 

using the pedigree from Figure 1a converted to a graph 

of parent-child edges. 

5.2.   Calculating 
ab

Φ and ( )INC A  

According to our path-counting formula (1.7), the 

calculation of 
abc

Φ requires the computation of ( )INC A  

as a final step. In our work, we utilize the efficient 

NodeCodes-based method described by Elliott
4
 to 

compute ( ) fmINC A = Φ . Note that, inbreeding coefficient 

of an individual is actually the kinship coefficient for the 

individuals’ parents. As a result, the method for 

computing inbreeding coefficient described by Elliott
4
 

can be utilized to calculate
ab

Φ in general.  

5.3.   Calculating 
abc

Φ  

The basic idea of the path counting formula for 
abc

Φ  is 

to identify the common ancestors of a, b and c and sum 

their contributions to
abc

Φ . Note that, the NodeCodes of 

an individual i effectively capture all ancestors that pass 

genes to i. Thus, given the NodeCodes of three 

individuals a, b, and c, we can identify all triple-

common ancestors of a, b, and c via longest common 

prefix matching and each NodeCode from a, b, and c 

containing the shared prefix represents a path to the 

shared individual. We process each triple-common 

ancestor at path-level to form path-triples by taking the 

cross products of the sets of prefix-matched NodeCodes 

from a, b, and c to obtain all path-triples to be processed 

for that common ancestor. For each path-triple, we 

identify crossover, overlap, and shared individuals 

among three paths, and then utilize the logic described 

in Figure 3 to decide the triple’s case and thus how it 

should contribute to the sum according to equation  

(1.7).  This process is repeated for each such shared 

NodeCode prefix which is a Longest Common Prefix 

(LCP) for matching (which will be defined shortly) to 

obtain the final sum as the value for 
abc

Φ . The general 
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outline for calculating 
abc

Φ using NodeCodes is 

presented in algorithm Generalized-Kinship-Coefficient-

abcΦ . 

 

  Algorithm Generalized-Kinship-Coefficient-
abc

Φ  

Input: NodeCodes NC(a), NC(b), and NC(c) 

Output: 
abc

Φ  

1. Initialize 0abcΦ = . 

2. Identify a set of triple-common ancestors of a, b and c. 

3. For each common ancestor A 

a. Find a set of <PAa, PAb, PAc>. 

b. For each <PAa, PAb, PAc> 

- Process-Path-Triple (<PAa, PAb, PAc>). 

- If <PAa, PAb, PAc>∈Case 1 or Case 2 ,  

then <P , P , P >Aa Ab Ac
2

1
2var ( ) [1 3* ( )]

L
INC A

+

= + . 

- If <PAa, PAb, PAc>∈Case 3 or Case 4,  

then <P , P , P >Aa Ab Ac
2

1
2var ( ) [1 ( )]

L
INC A

+

= + . 

- Otherwise, var 0= . 

- varabc abcΦ = Φ + . 

4. Return 
abc

Φ . 

 

Algorithm Process-Path-Triple 

Input:  <PAa, PAb, PAc> 

Output: the case that <PAa, PAb, PAc> fits in 

1. Initialize  crossover=false, overlap=false. 

2. Identify a set of shared individuals between any two of 

the three paths, and among all three paths. 

3. If no shared indiviudal,  

  then return  <PAa, PAb, PAc>∈Case 1. 

4. For each shared individual si 

- If si is shared among all three paths,  

  then return  <PAa, PAb, PAc>∈Case 5. 

- If si is a crossover individual, then crossover=true. 

- Else, check if the overlap path is a root overlap path. 

-  If it is a root overlap path, then overlap=true. 

-  Otherwise, return  <PAa, PAb, PAc>∈Case 6. 

5. If crossover=true && overlap=false,  

  then return  <PAa, PAb, PAc> ∈Case 2. 

6. If crossover=false && overlap=true,  

  then return  <PAa, PAb, PAc>∈Case 3. 

7. If crossover=true && overlap=true,  

  then return  <PAa, PAb, PAc>∈Case 4. 

 

In this algorithm, step 2 and step 3.a are based on 

finding the LCP for matching and then find the unique 

set of shared individuals by treating the prefixes as 

NodeCode and retrieving individual identifiers by the 

NodeCodes to eliminate duplicates. Step 3.b calls the 

algorithm Process-Path-Triple, which implements the 

logic presented in Figure 3, to return path-triple’s case. 

In this procedure, we identify crossover, overlap 

individuals, and root overlap paths, which are the critial 

steps for processing a path-triple.  We will explain them 

in detail. 

Longest Common Prefix (LCP) for matching:  Let X, 

Y, and Z be (sub)sets of the NodeCodes for a, b, and c. 

Then p is the longest common prefix for matching X, Y, 

and Z, if there is no p’ where p is a prefix of p’, and p’ is 

a common prefix of all xi in X, all yi in Y,  and all zi in 

Z.  

Identifying triple-common ancestors: We use the 

notation p=LCP(X,Y,Z) to denote that p is the LCP for 

matching sets X, Y, and Z. Given NodeCodes NC(a), 

NC(b), and NC(c), identifying triple-common ancestors 

requires matching NC(a), NC(b), and NC(c) having the 

longest common prefix for matching sets.   

Identifying path-triples: Let A be a triple-common 

ancestor of a, b, and c, pi, 1≤i≤k, be the NodeCodes of A 

such that pi=LCP(Xpi,Ypi,Zpi) for some nonempty subsets 

Xpi, Ypi, and Zpi of NC(a), NC(b), and NC(c), 

respectively. Let p be any one of such pi’s. Then, the set 

of path-triple from A to a, b, and c can be represented as 

PT(A, p)={(x,y,z)| p=LCP(Xp, Yp ,Zp) and x∈  Xp , y ∈  

Yp , and  z ∈  Zp }. 

Identifying crossover and overlap individuals: If s is 

a shared individual between two paths PAa and PAb, then 

there must be a NodeCode ( )
Aa

n NC s∈  that is proper 

prefix of PAa and a NodeCode ( )
Ab

n NC s∈  that is 

proper prefix of PAb. We call s a crossover individual 

with respect to PAa and PAb if nAa and nAb pass through 

different parents of s (i.e. one code passes through the 

mother and one passes through the father, identified by 

gender delimiters).  However, if nAa and nAb pass 

through same parent of s, then s is an overlap individual 

with respect to PAa and PAb. 

Identifying the root overlap path: If s is an overlap 

individual with respect to PAa and PAb, then there must 

be a NodeCode ( )Aan NC s∈  that is proper prefix of PAa 

and a NodeCode ( )Abn NC s∈  that is proper prefix of 

PAb. We identify an overlap path with respect to s as a 

root overlap path if nAa is equal to nAb; otherwise, it is 

not a root overlap path. 

5.4.   Computing 
aab

Φ and
aaa

Φ  

When calculating the condensed identity coefficients, 

we also need to directly calculate 
aab

Φ and
aaa

Φ . 

However, these cases can be transformed and reduced  

to 
abc

Φ and
ab

Φ , respectively, which can directly be 
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computed according to (1.7) and Wright’s formula  

(1.6).  

For
aab

Φ , assume a has two virtual children x and y, 

and we first compute
xybΦ . According to the recursive 

formula (1.1), we get 21
2( ) *xyb aabΦ = Φ , which can be 

rewritten as 4.0*
aab xyb

Φ = Φ .  To evaluate this using 

NodeCodes, we can artificially construct the NodeCodes 

for x and y based on the NodeCodes for a. With 

( )NC x and ( )NC y , we can apply the formula (1.7) to 

compute 
xybΦ .  

For
aaa

Φ , we evaluate it by substituting equation 

(1.3).  Again, finding the inbreeding of a is done using 

the NodeCodes-based method proposed by Elliott
4
. 

Thus, we can now fully compute the generalized kinship 

coefficient for two or three individuals.  

6.   EXPERIMENTS 

In this section, we show the efficiency of our path-

counting method using NodeCodes for 
abc

Φ  by making 

comparisons with the performance of a recursive method 

proposed by Karigl
12

. We examine the performance of 

abc
Φ  using data from the Cleveland Clinic’s Familial 

Polyposis  Registry
9
 and synthetic pedigrees

4
. Results 

for 
ab

Φ are equivalent to finding the inbreeding 

coefficient as in Elliott’s work
4
, where experiments 

showed speed improvements of 3-9 times. 

6.1.   Experimental Setup 

The Cleveland Clinic’s Familial (CCF) Polyposis 

Registry
9
 database contains pedigrees of 750 families 

and 11,350 patient histories recorded in the past twenty-

five years at CCF.  We performed experiments on this 

dataset using 654 pedigrees containing 8,345 individuals, 

with the largest pedigree consisting of 118 individuals 

spanning 8 generations.  In order to test scalability of 

our method, we used twelve synthetic pedigrees
4
 ranged 

from 77 individuals spanning 3 generations for the 

smallest to 195,197 individuals spanning 19 generations 

for the largest. The data is stored in a SQLServer 

database. 

We compared the execution time required to 

calculate 
abc

Φ  by the recursive method described  by 

Karigl
 12

 and the path-counting method using 

NodeCodes. We analyzed the effects of pedigree size (# 

individuals), the depth of individuals in the pedigree (the 

longest path between the individual and a progenitor), 

and the kinship coefficient value. 

6.2.   Experimental Results 

In the first experiment, 500 random triples were selected 

from each of our 12 synthetic pedigrees.  For each triple, 

the query was run on cold cache starting with no 

memoization data to show how the cost of calculating 

kinship increases with pedigree size for the recursive 

algorithm and the path-counting method using 

NodeCodes. We refer to the recursive method as 

KinshipIter and we refer to the path-counting method 

using NodeCodes as KinshipNC. 

 

Effect of Pedigree Size on Average Query Time in 

Synthetic Pedigrees (500 random triples each)

0

500

1000

1500

2000

2500

3000

77 18
1

38
3

76
9

1,
55
8

3,
10
5

6,
17
4

12
,3
51

24
,6
67

49
,7
61

98
,3
28

19
5,
19
7

#Individuals in Pedigree

A
v

e
ra

g
e

 Q
u

e
ry

 T
im

e
 (

m
s)

KinshipIter

KinshipNC

 
Fig. 5. Effect of pedigree size on average query time in synthetic 

pedigrees 

 

Effect of Depth on Average Query Time in Largest 

Synthetic Pedigree (100 random triples each)
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Fig. 6. Effect of depth on average query time in largest synthetic 

pedigree 

 

Figure 5 shows the average time per query for each 

pedigree.  As can be seen, the average time per query 

grew increasingly larger for KinshipIter method 

compared to KinshipNC as the pedigree size increased, 

from a comparable amount of time on the small 

pedigrees (<800 individuals) to 2.2-3.1 times slower per 

query than KinshipNC on the larger pedigrees (>1200 

individuals).  
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In our next experiment, we examined the effect of 

the depth of the individual in the pedigree (number of 

steps in the longest NodeCode) on the query time. For 

each depth, we generated 100 random triples from the 

largest synthetic pedigree. Figure 6 shows how the 

average time per query grows as the individual’s depth 

increases. We can see that KinshipNC scales better than 

KinshipIter, 1.7-2.3 times faster than KinshipIter for 

large pedigrees. The reason for this is that KinshipNC 

can skip intermediate generations and can jump straight 

to the common ancestors. 

 

Effect of Kinship Coefficient Value on Query Time in 

Largest Synthetic Pedigree (1000 random triples)
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Fig. 7. Effect of kinship coefficient value on average query time in 

largest synthetic pedigree 
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Fig. 8. Kinship coefficient value distribution for triples in Fig. 7 

 

Next, we generated 1,000 random triples from the 

largest synthetic pedigree and investigated the effect of 

the kinship coefficient value on query time. For the 

kinship coefficient value, we expected that individuals 

with larger kinship coefficients would be more inbred 

and have more NodeCodes, causing KinshipNC to suffer 

slightly. Figure 7 shows the average query time for each 

distinct kinship coefficient value, and we can see that for 

most values of the kinship coefficient, KinshipNC 

outperformed KinshipIter by 4.9-7.3 times.  As expected, 

for a few of the highest kinship coefficient values, we 

see slightly less improvement with respect to the 

performance of KinshipNC over that of KinshipIter 

(only 2.5 times faster). Figure 8 shows the distribution 

of the kinship coefficient value for the triples used in 

Figure 7. It clearly shows that the low-range values 

account for most of the triples, and for those values, 

KinshipNC outperforms KinshipIter.  

Finally, we compared the results from our 

experiment on all the real pedigrees, which are all 

relatively small in comparison; the results are shown in 

Table 1. We randomly picked 43,862 triples on the real 

pedigrees. According to the ratio in the table, we can tell 

the KinshipNC is around 8.90 times faster than 

KinshipIter. 

 
Table 1. Performance results on real data 

  KinshipIter KinshipNC Ratio 

Average Time Elapsed (ms) 29.17 3.28 8.90 

Average SQL Queries Run 26.10 3.15 8.30 

7.   CONCLUSION 

We have proposed a path-counting formula (PCF) for 

generalized kinship coefficient by generalizing Wright’s 

path-counting method for three individuals. Based on 

our PCF, we presented an efficient and scalable method 

using NodeCodes for the computation of generalized 

kinship coefficient. We also implemented and tested our 

method using both real and synthetic data of various 

sizes to test scalability. Experimental results show that 

the use of NodeCodes for PCF achieves 2.2-8.9 times 

faster performance for computing generalized kinship 

coefficient on pedigree data, especially for real 

pedigrees as well as synthetic pedigrees of sizes between 

800 and 200,000. Our future work includes (i) 

generalizing PCF for remaining generalized kinship 

coefficients, (ii) developing a scalable method for 

calculating identity coefficients utilizing the PCF and an 

encoding of paths such as NodeCodes. 
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