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The recent explosion in the number of clinical studies involving microarray data calls for novel computational methods for their 

dissection. Human protein interaction networks are rapidly growing and can assist in the extraction of functional modules from 

microarray data. We describe a novel methodology for extraction of connected network modules with coherent gene expression patterns 

that are correlated with a specific clinical parameter. Our approach suits both numerical (e.g., age or tumor size) and logical parameters 

(e.g., gender or mutation status). We demonstrate the method on a large breast cancer dataset, where we identify biologically-relevant 

modules related to nine clinical parameters including patient age, tumor size, and metastasis-free survival. Our method is capable of 

detecting disease-relevant pathways that could not be found using other methods. Our results support some previous hypotheses 

regarding the molecular pathways underlying diversity of breast tumors and suggest novel ones. 

1.   INTRODUCTION 

Systems biology has the potential to improve the 

diagnosis and management of complex diseases by 

offering a comprehensive view of the molecular basis 

behind the clinical pathology. To achieve this, a 

computational analysis extracting mechanistic 

understanding from the available data is required. 

Such data include many thousands of genome-wide 

expression profiles obtained using the microarray 

technology. A wide variety of approaches have been 

suggested for reverse engineering of mechanistic 

molecular networks from expression data
1-3

. However, 

most of these methods are effective only when using 

expression profiles obtained under diverse conditions 

and perturbations, while the bulk of data currently 

available on human clinical studies are expression 

profiles of groups of individuals sampled from the 

natural population. The standard methodologies for 

analysis of such datasets usually include: (a) 

unsupervised clustering of the samples to reveal the 

basic correlation structure, and (b) focus on a specific 

clinical parameter and the application of statistical 

methods for identification of a gene signature that best 

predicts it. While these methods are successful in 

identifying potent signatures for classification 

purposes
4,5

, the insights that can be obtained from 

examining the gene lists they produce are frequently 

limited. 

It is thus desirable to develop novel computational 

tools that will utilize additional information in order to 

extract more knowledge from gene expression studies. 

Various parameters are commonly recorded in such 

studies, and they can be classified into two types: (a) 

logical parameters (e.g., gender or tumor subtype) and 

(b) numerical parameters (e.g., patient age or tumor 

grade). A key question is how to identify genes 

significantly related to a specific clinical parameter. 

As it is frequently difficult to suggest novel 

hypotheses based on individual genes, it is desirable to 

identify the pathways that are correlated with a 

clinical parameter. By considering together the whole 

pathway, correlations that would have been missed if 

we tested each gene separately can be revealed. One 

approach to this problem uses predefined gene sets 

describing pathways and quantifies the change in their 

expression levels
6-8

. The drawback of this approach is 

that pathway boundaries are often difficult to assign, 

and in many cases only part of the pathway is altered 

during disease. Moreover, unknown pathways are 

harder to find in this approach. To overcome these 

problems, the use of gene networks was suggested. 

Several approaches for integrating microarray 

measurements with network knowledge have been 
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proposed, some of which can be applied also for 

binary clinical parameters. Some proposed 

computational methods for detection of subnetworks 

that show correlated expression
9-11

. A successful 

method for detection of `active subnetworks' was 

proposed by Ideker et al.
12

 and extended by other 

groups
13-16

. These methods are based on assigning a 

significance score to every gene in every sample and 

looking for subnetworks with statistically significant 

combined scores. Breitling et al.
17

 proposed a simple 

method named GiGA which receives a list of  

genes ordered by expression relevance and extracts 

subnetworks corresponding to the most relevant genes. 

Other tools use network and expression information 

together, but for sample classification
18,19

. 

The most basic parameter in clinical studies is the 

binary disease status (case vs. control). Other studies 

provide more clinical information in the form of 

additional parameters. For example, in the breast 

cancer expression data published by Minn et al.
20

, 

each sample was accompanied by up to 10 different 

parameters (Table 1). These parameters include 

general characteristics of the patients (e.g., age), 

pathological status of the tumor and follow-up 

information. Given such data, we wish to identify 

pathways whose transcription is dysregulated in a 

manner that is consistent with a particular clinical 

parameter. This information can then be used both  

for predictive purposes and for improving our 

understanding of the biology underlying the disease 

progression. This requires identifying subnetworks 

with expression patterns correlated to numerical or 

multi-valued logical parameters with more than two 

possible values. 

We have previously developed the MATISSE 

algorithm for extraction of functional modules from 

expression and network data
9
. It receives as input a 

protein interaction (PI) network alongside a collection 

genome-wide mRNA expression profiles. The output 

of MATISSE is a collection of modules: connected 

subnetworks in the PI graph, whose corresponding 

mRNAs exhibit significantly correlated expression 

patterns. Here we describe an extension of the 

MATISSE algorithm aimed at extraction of modules 

of genes whose expression profiles are not only 

correlated to one another, but also correlated with one 

of the clinical parameters. These two requirements 

aim to identify subnetworks that constitute functional 

modules in the cell and are involved with a specific 

clinical phenotype. 

We used a human PI network consisting of 

10,033 nodes and 41,633 interactions (see Methods) 

and applied our algorithm to 99 breast cancer samples 

(BC dataset
20

) in conjunction with 10 numerical and 

logical parameters (Figure 1). This analysis identified 

several modules significantly correlated with various 

parameters such as patient age, tumor size, Her2  

status and metastases-free survival period length. 
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Fig. 1. Study outline. Clinical parameters are used to generate a collection of parameter profiles. The parameter profiles are used, together with 

gene expression data, to generate gene similarity scores. These scores, together with a protein interaction network serve as an input to 

MATISSE, which identifies a set of modules for each parameter. The modules are then filtered and a collection of non-redundant modules is 

produced. 
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Importantly, our results provide support for the 

correlation between the expression levels of several 

pathways, such as the ribosomal proteins and the 

patient prognosis. However, this is not always the 

case, as we did not find support for the correlation 

between survival and the levels of the unfolded 

protein response pathway genes. Finally, we show that 

the specific disease-related insights suggested by our 

method can not be picked up using existing alternative 

methods. 

2.   METHODS 

2.1.   The basic methodology 

Our approach builds on the MATISSE methodology 

for identifying co-expressed subnetworks
9
. We first 

outline that methodology here. The input to MATISSE 

includes an undirected constraint graph G
C
 = (V, E), a 

subset 
sim

V V⊆ and a symmetric matrix S where Sij is 

the similarity between ,  
i j sim

v v V∈ . The goal is to find 

disjoint subsets 
1 2
, ,...,

k
U U U V⊆  called modules, so 

that each subset induces a connected subgraph in G
C
 

and contains elements that share high similarity 

values. We call the nodes in Vsim front nodes and 

nodes in V\Vsim back nodes. 

In the biological context, V represents genes or 

gene products (we shall use the term 'gene' for 

brevity), and E represents interactions between them. 

Sij measures the similarity between genes i and j. 

Originally, we used the Pearson correlation between 

gene expression patterns as a similarity metric
9
. The 

set Vsim is smaller than V in several cases. For 

example, when using mRNA microarrays, some of the 

genes may be absent from the array, and others may 

be excluded due to insignificant expression changes 

across the tested conditions. Hence, a module aims to 

capture a set of genes that have highly similar 

behavior, and are also topologically connected, and 

thus may belong to a single complex or pathway. The 

quantification of gene similarity is obtained by 

formulating the problem as a hypothesis testing 

question. In this approach statistically significant 

modules correspond to heavy subnetworks in a 

similarity graph, with nodes inducing a connected 

subgraph in G
C
. A three-stage heuristic is used to 

obtain high-scoring modules. 

2.2.   Identifying modules correlated 
 with clinical parameters 

Here, we are interested in extracting groups of genes 

that are not only similar across the experimental 

conditions, but also exhibit significant correlation with 

one of the clinical parameters. To this end we devised 

a hybrid similarity score that reflects these two 

phenomena. Importantly, our scheme can handle both 

numerical and logical parameters. The advantage of a 

uniform scheme is that the modules identified for 

different parameters are directly comparable, and in 

case of overlaps, the more significant module can be 

picked. 

Formally, we are given a set of parameters 

P1,…,Pm (numerical and logical) and we wish to 

quantify, for each gene pair (i,j), the extent to which 

the genes are correlated to Pk and to each other. For 

each parameter we first discard the samples for which 

the value of the parameter is not available. Let m be 

the number of samples that survived this filter.  

Then, we compute one or more parameter profiles 
1 2

( , ,..., )
m

ij ij ij ij
p p p p= . If Pi is a numeric parameter,  

it is assigned a single parameter profile vector pi1,  

Table 1. Parameters from the breast cancer dataset that were used in this study. 
 

Parameter Samples* Type Distribution 

Age at diagnosis 99 Numerical 55.80±13.6 

Tumor Size (cm) 99 Numerical 3.62±1.7 

Positive Lymph Nodes 99 Numerical 3.59±6.3 

Estrogen receptor (ER) status 99 Logical  

Progesterone receptor (PR) status 98 Logical  

Her2 staining (grade) 88 Numerical 0.53±0.98 

Metastasis after 5 years? 68 Logical  

Metastasis free survival (years) 82 Numerical 5.17±2.3 

Lung metastasis free survival (years) 82 Numerical 5.50±2.3 

Bone metastasis free survival (years) 82 Numerical 5.34±2.3 

* Number of samples for which the parameter was available 
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and 
1

k

i
p  equals the value of Pi in sample k. If Pi is a 

logical parameter that attains with k different values 
l

iii ccc ,...,, 21
, then for each 1 j l≤ ≤  we compute  

a 0/1 parameter profile vector 
1 2

( , ,..., )
m

ij ij ij ij
p p p p=  

where 1
k

ij
p =  if the value of Pi in sample k is cj and 0 

otherwise. 

We denote the expression pattern of gene k by 
1 2( , ,..., )m

k k k k
x x x x= . We are interested in quantifying 

the similarity between pij and xk. Let rijk be the Pearson 

correlation coefficient between pij and xk. If P is 

numerical, then rj1k is close to 1 if the transcript and 

the parameter are strongly correlated. If P is logical, 

rijk is close to 1 if the transcript levels are high when 

the value of Pi is cj and low otherwise. Transcript 

correlation to such 0/1 profiles was previously used 

successfully as a differential gene expression score
21

.  

Recall that we are interested in gene pairs a,b that 

are: (i) correlated with pij and (ii) correlated with each 

other. To address (i) we would like the similarity score 

of genes a and b to be high only if both a and b are 

correlated with the parameter. We thus first set 

( , ) min{ , }
diff ija ijb

S i j r r= . To address (ii) we use the 

partial correlation coefficient between the gene 

patterns conditioned on pij. Formally:  

where ra,b is the Pearson correlation coefficient 

between the profiles of genes a and b. Intuitively, Scorr 

conveys the information about how similar a and b 

are, given their correlation to pij. Finally, we use the 

similarity score: 

where λ is a tradeoff parameter setting the relative 

importance of the correlation with the clinical 

parameter. For each parameter profile S scores were 

computed for both positive and negative correlations 

with the parameter. Note that the values of S are 

always between -1 and 1. Note that standard Pearson 

correlation can also be used as Scorr. We chose to use 

partial correlation in this work, as it allows us to 

penalize gene pairs for which most of the correlation 

can be explained by their separate correlations with 

the clinical parameter. The S scores are then modeled 

using the probabilistic model described previously
9
. 

2.3.   Finding high-scoring modules 

MATISSE uses a three-step heuristic to identify high-

scoring modules. The heuristic consists of (a) 

identification of small high-scoring seeds; (b) seed 

optimization using a greedy algorithm; (c) 

significance filtering. The seed finding step was 

performed as described previously
9
. The greedy 

algorithm was improved in this study. To allow 

improvement of modules that reached the maximum 

size limit, we added two additional operation types: 

(a) a "replace" operation in which a node is added to a 

module replacing the node that contributes least to the 

module score; (b) a "swap" operation, in which 

module assignments of two nodes are swapped. Both 

operations are performed only if they improve the 

total solution weight jeopardizing the connectivity of 

the modules. 

In order to evaluate the statistical significance of 

the modules found in a dataset, we randomly shuffled 

the expression pattern of each gene and re-executed 

the algorithm. This process was repeated 100 times 

and the best score of a module in each run was 

recorded. These scores were then used to compute an 

empirical p-value for modules found in the real data. 

Only modules with p<0.1 were retained. 

2.4.   Filtering overlapping modules 

We removed modules that overlapped by >50% with 

another module that was more significantly correlated 

with a clinical parameter. 

2.5.   MATISSE parameters 

We used λ=4 for the analysis described in this paper. 

The upper bound on module size was set to 120. The 

rest of the parameters were set as described 

previously
9
. 

2.6.   Network and expression data 

A human PI network was compiled from the HPRD
22

, 

BIND
23

, BioGrid
24

, HDBase (http://hdbase.org/), 

and SPIKE
25

 databases. The resulting network 

consisted of 10,033 proteins (mapped to Entrez Gene 

entries) and 41,633 interactions. 

The expression dataset was obtained from GEO 

(Accession GSE2603). We used the normalized 

expression values available in the respective GEO 

records. Affymetrix probe identifiers were mapped to 

1

diff corr
S S

S
λ

λ

+ ⋅
=

+

,

2 2
( , | )

(1 )(1 )

a b ija ijb

corr ij

ija ijb

r r r
S a b p

r r

−
=
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Entrez Gene. If several probes mapped to the same 

Entrez Gene, the highest intensity was used in every 

sample. Values <20 were set to 20 and values >20,000 

were set to 20,000. 2,000 genes that showed the 

highest gene pattern variance were used as front 

nodes. 

2.7.   Module annotation 

We annotated the modules using  Gene Ontology 

(http://www.geneontology.org/) and MSigDB 

(http://www.broad.mit.edu/gsea/, "curated gene 

sets" collection
6
). Gene Ontology enrichment p-values 

were computed using TANGO
26

, which uses 

resampling to correct for multiple testing and 

annotation overlap. All other p-values were 

Bonferroni corrected for multiple testing. 

3.   RESULTS 

3.1.   Breast cancer dataset 

The breast cancer (BC) dataset contained 99 

expression profiles of tumor samples from the 

MSKCC cohort
20

. 15 different parameters were 

available for each sample, some of which were not 

sufficiently clear or redundant. The 10 parameters we 

used are listed in Table 1. For 9 parameters at least 

one significant module was identified. After filtering 

module overlaps (see Methods) we identified 10 

significant non-redundant modules, with sizes ranging 

from 84 to 118 (Table 2). 

Using GO and MSigDB annotations (see 

Methods) we found that 6 modules (60%) were 

significantly enriched with at least one GO biological 

process and all 10 modules (100%) were enriched 

with at least one MSigDB category (Table 2). Seven 

modules (70%) were enriched with at least one of the 

16 MSigDB gene sets related to breast cancer. 

Overall, eight of the breast cancer related gene sets 

were enriched in at least one module. 

Module BC-1 was positively correlated with the 

age of the woman at the time of breast cancer 

diagnosis. Inspection of the expression data revealed 

that the module was particularly up-regulated in 

women above age 72 (Figure 2). The module did not 

show significant GO enrichment categories. When 

examining 27 MSigDB gene sets related to aging, we 

found a significant between BC-1 and the MSigDB 

  

category "AGED_RHESUS_UP" (8 genes, p=0.002), 

which contains genes identified as up-regulated in the 

muscles of aged rhesus monkeys when compared to 

young ones
27

. One of these eight genes is RELA, a 

transcription factor component of the NFκB complex. 

BC-1 contained two additional genes from the PKC 

pathway which activates NFκB – NFKBIA and  

PKCA (MSigDB gene set PKCPATHWAY, p=0.04). 

Increased activity of the NFκB pathway has been 

recently implicated in aging in a study utilizing 

diverse expression data and transcription factor 

binding motifs
28

. Adler et al. have also shown that 

blocking of this pathway can reverse the age-related 

transcriptional program. Note that our methodology 

connecting NFκB to aging is completely different: 

Adler et al. sought motifs over-represented in age-

dependent genes in various microarray datasets, 

whereas we looked for connected PI subnetworks that 

are correlated with age on the expression level.  Our 

results thus provide further support for the relationship 

between NFκB and age-dependent transcriptional 

changes.  

BC-2 is an apoptosis-related module that is 

positively correlated to the size of the tumor. This 

module is also significantly enriched with genes 

related to unfolded protein response (UPR) and  

the TNF pathway. Accordingly, this module also 

significantly enriched with heat shock factor (HSF) 

targets (p=0.03) and genes localized to the ER (from 

GO, p=6.81*10
-9

). Interestingly, heat shock protein 

level has been traditionally associated with poor breast 

cancer prognosis and higher metastasis likelihood
29

. 

However, BC-2 was only weakly correlated with 

metastases-free survival period in our dataset 

(r=0.038). 

Two modules, BC-3 and BC-4, were identified as 

negatively correlated with tumor size. Both modules 

were enriched with genes previously associated with 

ER-positive tumors. However, the correlation of the 

module profiles with ER status was very weak in our 

dataset (r=0.001 and r=0.008, for BC-3 and BC-4, 

respectively). However, we did find a significant 

overlap between genes in BC-3 and the recently 

mapped targets of the estrogen receptor
30

 (p=1.13* 

10
-4

). Finally, estrogen receptors Esr1 and Esr2 both 

appeared in BC-3. This suggests that increased ER 

transcription factor activity could result in smaller 

tumors. 
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Fig. 2. BC-1 module related to age at diagnosis. (A) The subnetwork view of the module. Front nodes have a brighter background color. Gene 

overlapping the MSigDB RHESUS_AGING_UP category have thicker border. The arrow points at the RELA transcription factor. (B) Average 

expression levels of BC-1. Numbers on top indicate the age of diagnosis. The error bars represent ± one standard deviation.  
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Table 2. Modules identified in the breast cancer dataset of Minn et al. Front nodes are nodes for which expression data are used 

(see Methods). GO enrichment p-values were computed using TANGO. MSigDB enrichment p-values are Bonferroni corrected. 

For MSigDB, up to 5 most significantly enriched gene sets are shown. 

Module Parameter

Average 

correlation

Total 

nodes

Front 

nodes

Score 

FDR 

GO biological 

process p-value MSigDB gene set p-value 

HUMAN_MITODB_6_2002 0.016

MITOCHONDRIA 0.022

BRCA_ER_POS 0.026

PKCPATHWAY 0.04

ST_TUMOR_NECROSIS_FAC

TOR_PATHWAY

9.36E-10

BRCA_ER_NEG 8.76E-08

STEMCELL_NEURAL_UP 9.11E-08

APOPTOSIS 3.79E-07

APOPTOSIS_GENMAPP 1.68E-06

BRCA_ER_POS 2.13E-09

ALZHEIMERS_DISEASE_DN 1.92E-05

BREASTCA_TWO_CLASSES 3.05E-04

DRUG_RESISTANCE_AND_M

ETABOLISM

9.96E-04

CARM_ERPATHWAY 0.034

BRCA_ER_POS 0.002

AKAPCENTROSOMEPATHWA

Y

0.009

P53PATHWAY 0.023

BRCA_ER_NEG 1.32E-09

STEMCELL_NEURAL_UP 1.41E-05

TARTE_PLASMA_BLASTIC 7.84E-05

PENG_GLUTAMINE_DN 8.87E-04

ALZHEIMERS_DISEASE_DN 0.004

ALZHEIMERS_DISEASE_DN 2.74E-08

HUMAN_MITODB_6_2002 9.84E-05

FLECHNER_KIDNEY_TRANSP

LANT_REJECTION_DN

2.83E-04

PGC 3.67E-04

MITOCHONDRIA 9.48E-04

RIBOSOMAL_PROTEINS 9.23E-33

JISON_SICKLECELL_DIFF 3.86E-08

FLOTHO_CASP8AP2_MRD_DI

FF

3.32E-07

HCC_SURVIVAL_GOOD_VS_

POOR_DN

3.43E-04

TRANSLATION_FACTORS 0.009

antigen 

processing

<0.001 WIELAND_HEPATITIS_B_IND

UCED

1.09E-11

antigen 

presentation

<0.001 PROTEASOME 9.97E-11

FLECHNER_KIDNEY_TRANSP

LANT_WELL_UP

5.12E-08

PROTEASOMEPATHWAY 7.40E-08

TCRAPATHWAY 3.04E-06

RIBOSOMAL_PROTEINS 1.40E-33

JISON_SICKLECELL_DIFF 4.30E-11

FLOTHO_CASP8AP2_MRD_DI

FF

2.22E-10

MYC_TARGETS 6.95E-04

HCC_SURVIVAL_GOOD_VS_

POOR_DN

0.003

RIBOSOMAL_PROTEINS 7.08E-11

NFKBPATHWAY 3.23E-06

JISON_SICKLECELL_DIFF 7.28E-06

ST_TUMOR_NECROSIS_FAC

TOR_PATHWAY

1.96E-05

APOPTOSIS_GENMAPP 3.04E-04

0.004translation

<0.001

response to 

unfolded 

protein

positive 

regulation of I-

kappaB 

kinase/NF-

kappaB 

cascade

modification-

dependent 

protein 

catabolism

positive 

regulation of I-

kappaB 

kinase/NF-

kappaB 

cascade

<0.001

0.009

0.02

<0.001

BC-1 Age at 

diagnosis

0.196 90 64 0.08

BC-2 0.188 118 82

translation

-0.157 97

<0.01

86 <0.01

107

BC-3 Tumor Size -0.175 115

Tumor Size

60 0.09

BC-5 Positive 

lymph nodes

-0.143 84 66 <0.01

BC-4 Tumor Size

BC-6 Her2 staining 0.204

86 0.02

BC-7 Metastasis 

after 5 years?

-0.203 96

80 0.01

74 0.04

91 <0.01

BC-8 Metastasis 

after 5 years?

BC-9 Mestassis 

free survival 

0.191 118

0.224 116

74 0.01BC-10 Lung 

metastatis 

free survival

0.195 102
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 Three modules (BC-7, BC-9 and BC-10) were 

significantly enriched with ribosomal proteins (RPs). 

Expression levels of these modules were correlated 

with Her2- and ER-positive longer metastases-free 

survival in the lungs and in the bone marrow. High 

expression of RPs is indicative of a higher metabolic 

rate within malignant cells. High levels of RP 

expression have been previously associated with Her2 

overexpression in BC cell lines
31

. RP over-expression 

was also associated with less aggressive ovarian 

tumors
32

. Our results provide additional support for 

the notion that RP expression is positively correlated 

with longer survival. Surprisingly, two of the  

modules enriched for ribosomal proteins (BC-7  

and BC-9) were enriched with the MSigDB class 

"HCC_SURVIVAL_GOOD_VS_POOR_DN" described 

as representing genes associated with poor survival in 

hepatocellular carcinoma. However, this class is not 

associated with any publication and BC-7 and BC-9 

were not enriched with other gene sets related to 

survival in MSigDB, so further corroboration is 

required here. 

BC-8 was significantly enriched with proteasomal 

genes and associated with shorter metastases-free 

survival periods. This module contained 16 different 

proteasomal subunits, all as front nodes. It also 

contained multiple genes associated with antigen 

representation and the immune response. Interestingly, 

this module was also significantly enriched with  

genes located on chromosome 6 (p=1.29*10
-6

, the 

most significant module-chromosome association). 

Therefore, it is possible that the up-regulation results 

from aberrations of this chromosome in a subset of the 

tumors. 

3.2.   Comparison with other methods 

We first compared the parameter-correlated modules 

(PCMs) to the modules obtained using the standard 

MATISSE algorithm with the same parameters. 

MATISSE identified 19 modules covering 996 genes. 

8 of the modules (42%) were significantly enriched 

for a GO category and 11 (58%) were enriched for an 

MSigDB category (all 11 were enriched with at least 

one breast-cancer related category), indicating that a 

larger percentage of PCMs are functionally relevant 

compared to MATISSE modules. However, 18 GO 

annotations were enriched in the MATISSE solution 

only, compared to 5 in the parameter-correlated 

solution only (195 vs. 47 for MSigDB gene sets), 

indicating a trade-off between specificity and 

selectivity in functional module selection. As 

expected, the MATISSE module genes were more 

strongly correlated on the expression level (average 

r=0.3 vs. 0.14), whereas PCMs were more strongly 

correlated with clinical parameters (average maximum 

correlation of 0.14 per PCM, compared to 0.12 for 

MATISSE modules). 

Some of the insights described above could not be 

revealed using MATISSE: only two small modules (9 

genes each) were slightly correlated with age and they 

did not overlap the rhesus aging signature; (b) the 

MATISSE modules that were slightly correlated with 

tumor size were not enriched for the UPR pathway; (c) 

no MATISSE modules were enriched for ribosomal or 

other translation-related proteins; (d) the maximum 

enrichment for same-chromosome genes was 

significantly lower (p=0.002 vs. p=1.29*10
-6

). Thus 

we conclude that while using expression correlation 

alone can lead to more diverse functional modules, 

using clinical parameter correlation enables detection 

of more specific disease-relevant modules that are 

missed otherwise. 

The insights also could not be based on parameter 

correlation alone. When taking the 200 genes with the 

highest enrichment with the parameters: (a) the genes 

correlated with age at prognosis were not enriched 

with the rhesus gene set and did not contain RELA; 

(b) the genes correlated with tumor size were not 

enriched with UPR pathway genes; (c) the genes 

negatively correlated with tumor size were not 

enriched with ER targets; (c) the genes correlated with 

metastases-free survival were not enriched with 

ribosomal proteins. 

Finally, logical parameters can be analyzed using 

GSEA
6
. GSEA found 130 (9) gene sets associated 

with poor (good) prognosis at FDR<0.1. 31 (3) were 

associated with negative (positive) ER status, none of 

them breast cancer related. No gene sets were 

significantly associated with PR status. Similar to our 

analysis, GSEA identified the correlation between 

survival and the levels of the ribosomal proteins and 

the proteasome. However, only one breast cancer 

related gene set appeared in the GSEA results 

(BRCA_ER_POS), and none of the pathways we 

identified using continuous parameters could be found 

using GSEA. 
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4. DISCUSSION 

The increasing availability of network and expression 

data in multiple species led to development of several 

methods for detecting modular structures through joint 

analysis of network and expression data
9,11-17

. As the 

coverage and quality of the interaction networks 

improve, we expect that these tools will play a central 

part in the analysis of microarray data. A prominent 

current challenge is to enable these tools to use as 

much additional information as possible in order to 

produce more accurate and biologically relevant 

results. Clinical parameters of the profiled tissue can 

help in association of genes and pathways with 

clinical phenotypes. 

To the best of our knowledge, the method we 

described here is the first capable of jointly analyzing 

interaction data, expression profiles and continuous 

numerical clinical parameters. A simple alternative for 

joint analysis of the three sources is to first apply a 

module finding algorithm to network and expression 

data, and then associate modules with parameters. As 

our results show, module finding algorithms are 

indeed successful at identifying multiple functional 

modules. However, clinically important pathways are 

missed if the clinical data are used only in the post-

processing of the modules. 

While the results we present are encouraging, 

there is certainly room for improvement. In particular, 

it would help to incorporate confidence levels for 

individual interactions
33

 and to further improve  

our optimization algorithm. Our methodology for 

integrating parameter data currently analyzes each 

parameter in isolation, ignoring correlations between 

parameters. Another important frontier is to associate 

modules with combinations of different parameter 

values, e.g., up-regulation in poor prognosis and in 

ER-negative tumors. 

Finally, we are currently developing a user-

friendly interface to the methods described here that 

will allow analysis through the MATISSE software 

(http://acgt.cs.tau.ac.il/matisse). 
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