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Solvent accessibility is an important structural feature for a protein. We propose a new method for solvent accessibility prediction that 
uses known structure and sequence information more efficiently. We first estimate the relative solvent accessibility of the query protein 
using fuzzy mean operator from the solvent accessibilities of known structure fragments that have similar sequences to the query 
protein. We then integrate the estimated solvent accessibility and the position specific scoring matrix of the query protein using a neural 
network. We tested our method on a large data set consisting of 3386 non-redundant proteins. The comparison with other methods show 
slightly improved prediction accuracies with our method.  The resulting system does need not be re-trained when new data is available. 
We incorporated our method into the MUPRED system, which is available as a web server at http://digbio.missouri.edu/mupred.
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1.   INTRODUCTION 

Predicting the three-dimensional structure of a protein 
from its sequence has been an open challenge in 
bioinformatics for more than three decades. In many 
cases, three-dimensional structures cannot be predicted 
accurately and researchers like to obtain structure 
features such as secondary structures and solvent 
accessibility (SA). While secondary structure captures 
some aspects of the protein structure, the SA 
characterizes different structural features. The concept 
of the SA was introduced by Lee and Richards1 and can 
be defined as the extent to which water molecules can 
access the surface of a protein. The knowledge of SA 
helped to further the understanding of protein structure 
classification2-4, protein interaction5-7, etc. 

A number of approaches such as information 
theory8, support vector machines9, neural networks10-12, 
nearest-neighbor methods13, and energy optimization14 
have been proposed for SA prediction. Almost all of 
these methods rely on protein position specific scoring 
matrix (PSSM)15 from multiple sequence alignments. 
There are at least two drawbacks of these approaches. 
First, they predict the structural features of the proteins 

without using the structural information available  
in the Protein Data Bank16 (PDB). Second,  
when proteins do not have close homologs in the 
database of known sequences (for example, nr at 
http://www.ncbi.nlm.nih.gov), the PSSM will not be 
well defined, making the predictions unreliable17. 

In our approach, both the structural information and 
the sequence profile information are used. We first build 
a structural profile by estimating the relative solvent 
accessibility of the query protein using a fuzzy mean 
operator (FMO) from the solvent accessibilities of 
proteins with known structures that have similar 
sequence fragments to the query protein. We then 
integrate the estimated solvent accessibility and the 
PSSM using a neural network (NN). We choose a NN as 
the approproiate scheme for combining information 
from profiles and FMO is automatically learned by the 
network from the training data. The output of the NN is 
the predicted relative solvent accessibility of each 
residue. The user may either obtain real solvent 
accessibility values (in terms of Å2) or classify solvent 
accessibility into multiple classes using any thresholds 
based on his/her specific needs. The proposed approach 
has the advantage of simplicity and transparency. Also, 
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most of the existing methods were tested on small data 
sets containing up to a few hundred sequences. These 
results on small sets have significant variations in 
prediction accuracies. To overcome this problem, we 
tested our method on a large-scale data set of non-
redundant proteins to obtain stable performance. The 
prediction program has been implemented into the 
MUPRED package as a public web server at 
http://digbio.missouri.edu/mupred along with the 
secondary structure prediction capacity. 

2.   METHOD AND MATERIALS  

In our method, the relative solvent accessibility of each 
amino acid in the query protein is first estimated using 
the FMO. The calculated fuzzy means are used as the 
initial set of features. The second set of features is 
derived from the PSSM of the query protein. These two 
features are integrated using a neural network. In 
Section 2.1, we introduce the features and the data sets 
used in this work.  The estimation of the relative solvent 
accessibilities using FMO is explained in Section 2.2. In 
Section 2.3, the process of deriving the second set of 
features and integrating these two feature sets using a 
neural network is described. In Section 2.4, the metrics 
used for performance assessment are presented.  

2.1.   Feature Inputs and Data Sets  

The PSSM of the query protein is the starting point in 
generating input features. We use PSI-BLAST15 and the 
nr database to generate the PSSM. We used the 
following parameters for generating the PSI-BLAST: j 
(number of iterations) = 3, M (substitution matrix) = 
BLOSUM90 with other parameters set at default  
values. We use the BLOSUM90 substitution matrix  
as we want only the hit fragments that are close 
subsequences of the query protein to contribute to the 
PSSM being generated. The parameters were 
experimentally determined on the training set. Similar 
results were obtained for a wide range of parameters 
(data not shown).   

A database of representative protein set (RPS), 
whose three-dimensional structures (and hence, solvent 
accessibilities) are known is required to estimate the 
relative solvent accessibility of the query protein. We 
used the March 2006 release of the PDBSelect18 
database to prepare RPS. The PDBSelect database 
consists of representative proteins such that the 

sequence identity between any two proteins in the 
database is not more than 25%. Initially, the database 
had 3080 chains. We only selected the proteins whose 
structures are determined by X-ray crystallography 
method with a resolution of less than 3 Å and lengths of 
more than 50 residues. We further restricted our 
selection to proteins which have at least 90% of their 
residues composed of regular amino acids. The selection 
process has resulted in RPS that contains 1998 proteins 
with 310,114 residues. 

First, we present the performance of our method on 
the RPS using a jack-knife procedure (query sequence 
eliminated from the RPS during prediction). We 
employed two widely used data sets (benchmark sets) to 
compare the performance of MUPRED with other 
methods. The first database used in reference [10] 
contains 126 representative proteins with 23,426 
residues (hereafter referred as RS126). The second data 
set was introduced by Naderi-Manesh et al. in Reference 
[8]. The database consists of 215 representative proteins 
with 51,939 residues (hereafter referred as MN215). The 
proteins in RPS that are similar to any proteins in the 
benchmark sets are eliminated using the following 
procedure: each sequence in the RPS database was 
queried against proteins in the benchmark sets using the 
BLAST19 program. If a hit with an e-value less than 0.01 
is found, the query sequence was eliminated from the 
RPS. This procedure further reduced the number of 
proteins in RPS to 1657. In addition to testing our 
method on the RPS and the two standard benchmark 
sets, we employed a fourth data set derived from the 
Astral SCOP domain database20 version 1.69. The 
original database with 25% maximum identity between 
any two sequences consists of 5457 protein domains. 
The proteins in the Astral SCOP data set that are similar 
to the proteins in the RPS are discarded using the same 
procedure outlined above (i.e., each sequence in the 
Astral SCOP database was queried against RPS using 
the BLAST program. If a hit with an e-value less than 
0.01 is found, the sequence was eliminated from the 
Astral SCOP database). Similar to the procedure used to 
generate the RPS, domain sequences shorter than 40 
residues were removed. If less than 90% of a domain 
sequence is composed of regular amino acids, it is 
discarded as well. The remaining 3386 domain 
sequences with 636,693 residues after the filtering make 
up the independent benchmark set. 
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2.2.   Fuzzy Mean Operator 

The profile of the query protein is used to search for the 
similar fragments in RPS by running the PSI-BLAST 
second time. The threshold value of e was set to 11,000 
when searching the RPS. The higher the threshold, the 
larger the number of fragments returned by the PSI-
BLAST. However, if the threshold is too high, the PSI-
BLAST returns large number of informative hits as well 
as noises from the database. The best compromise  
was experimentally determined.  The relative solvent 
accessibility (RSA) of each residue in the query protein 
is calculated using the hit fragments that have a residue 
aligned with the current residue using FMO. The 
process is explained in the following paragraphs. 

The hit fragments returned by the PSI-BLAST 
program are scored using the following equation:  

 ( ){ }e-valueS 10log7,1max +=  (1) 

This score is formulated as a dissimilarity measure. For 
instance, the fragments of proteins in RPS that have high 
sequence similarity with the subsequences of the query 
protein have high statistical significance (or low e-
value), therefore have low scores. 

The RSA of each residue of the query protein is 
calculated from the RSAs of hits that have a residue 
aligned with the current residue. The SA of the hit 
fragments are calculated using the DSSP21 program. For 
each residue, the absolute SA retuned by the DSSP 
program is transformed into RSA by dividing it with the 
maximum SA given in Reference [10]. The RSA of the 
query protein is calculated using the following 
expression for FMO: 
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where r is the current residue, K is number of hits that 
have residue aligned with the current residue, RSAj is the 
relative solvent accessibility of the residue in the jth hit 
that is aligned with the current residue, S is the score 
defined in Equation (1), and m is a fuzzifier22 that 
controls the weight of the dissimilarity measure S.  
The optimal value of fuzzifier was experimentally 

determined to be 1.5. Note that the Equation (2) is a 
special case of the fuzzy k-nearest neighbor algorithm22.  

2.3.   Profile Feature Set and Integration 
of the Two Feature Sets 

The second set of features is generated from the PSSM 
of the query protein. In the PSSM, each residue is 
represented by a 20 dimensional vector representing the 
likelihood of each of the 20 amino acids in that position. 
The profiles are first normalized and then rescaled into 
[-1 1] before converting them into vectors suitable for 
neural network training. We found that the maximum 
and minimum values in the profiles of all proteins in the 
RPS were -10 and 12, respectively.  Therefore, the 
profiles were normalized and rescaled using the 
following expressions: 

 12),( −← xjiPSSM , 

 where 
( )

22

10),( +← jiPSSM
x  (3) 

where i∈[1,…,n] (n is the length of the query protein) 
and j ∈ {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. 
An additional bit is used to represent if the current 
residue lies in the termini of the query protein. We 
arbitrarily choose 1 to represent the termini, while 0 is 
used for representing the interior of the protein. The 
transformed PSSM values, along with the additional bit 
are converted into vectors suitable for neural network 
training using a sliding window scheme, i.e., a vector 
representing the current residue is flanked by the vectors 
representing the neighbors on the both sides. This 
scheme allows us to capture that idea that a particular 
residue’s solvent accessibility is dependent on the 
solvent accessibility states of its neighbors28,36. The 
number of neighbors on each side is determined by 
parameter W. We experimentally determined that the 
optimal number of neighbors on each side of the current 
residue to consider for this feature set is 7 and therefore, 
the total number of features in this set is 
(20+1)x15=315. 

Similar to the features generated from the PSSM, 
the fuzzy means that originally lie in [0 1] are rescaled 
to lie in [-1 1] using the following transformation: 

 1)(2)( −×← rRSArRSA  (4) 

The rescaled fuzzy means are converted into 
vectors suitable for training the neural network using the 
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sliding window scheme. Again, we use an extra bit to 
indicate the termini of the protein using the same 
encoding method as the PSSM feature set. We 
experimentally determined that the optimal window size 
is 13 and therefore, the total number of features in this 
feature set is 2x13=26. These two feature sets together 
(26+315 = 341 features/residue) are used to train the 
neural networks. The neural network used to integrate 
the fuzzy means and PSSM is a fully connected feed-
forward network with one hidden layer, trained using 
standard back-propagation learning. We trained the 
networks with different number of nodes, starting at 170 
and increased 10 units at a time. We found that 240 
nodes resulted in an optimal performance. The output 
layer consists of a single neuron that produces the 
predicted RSA. The neural network has the following 
architecture 341×240×1 (input nodes × hidden nodes × 
output node). We randomly selected 50 of RPS proteins 
for generating the validation vectors and used the rest 
for training the neural networks. The networks were 
trained until the performance using the validation 
vectors started to decline. A total of 100 networks were 
trained using random initialization and the top six 
networks (networks with lowest re-substitution error the 
on the training data) were retained for prediction. Each 
query protein is simulated on all six networks and the 
average of the 6 networks is taken as the output of the 
prediction system. The block diagram of the MUPRED 
solvent accessibility prediction system is illustrated in 
Figure 1. 

2.4.   Prediction Accuracy Assessment  

If the system is used as a classifier to group the residues 
into two classes (buried and exposed), the following two 
metrics are used to assess the performance: 
Accuracy (Q2): 
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Matthew’s correlation coefficient23 (MCC): 
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where p is the number of correctly classified exposed 
residues (true positives), n is the correctly classified 
buried residues (true negatives), o is the number of 
residues that were incorrectly classified as exposed 

residues (false positives), u is the number of residues 
that were incorrectly classified as the buried residues 
(false negatives), and t = p + n + o + u (total number of 
residues). 

To asses the performance of the RSA prediction 
ability of the system, the mean absolute error (MAE) as 
defined below is used: 

 ∑ −= predictedobserved RSARSA
N

MAE
1

 (7) 

where RSAobserved is the experimental RSA of a residue 
from the DSSP file divided by its maximum SA while  
RSAobserved is the predicted RSA, and the summation is 
over all N residues in the protein. 
 

 
 
Fig. 1. MUPRED solvent accessibility prediction system. The profile 
of the query protein is first calculated and used to generate two  
feature sets. The first set consists of vectors derived from the 
normalized and rescaled PSSM using a sliding window scheme with 
window length (W) 15. This set consists of 15x21 =315 
features/residue. The second feature set is generated by searching the 
local database of representative proteins based on profile-sequence 
alignment. The homologous fragments returned by the search process 
are used to estimate the relative solvent accessibility of each residue 
using the fuzzy mean operator. The vectors representing the second 
feature set are derived from the fuzzy means, using the sliding 
window of length (W) 13. Similar to the first feature set, an additional 
bit is used to represent the termini of the query protein.  This feature 
set consists of 13x2 = 26 features, resulting in 341 features for each 
residue altogether. The neural network consists of 240 hidden units 
and a single output neuron that produces the predicted solvent 
accessibility. 

3.   RESULTS  

In this section, we discuss the performance of the FMO 
alone, FMO with a neural network and finally, 
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MUPRED that uses both FMO and PSSM on the RPS 
and independent SCOP derived set. We then compare 
MUPRED with some existing methods for prediction 
accuracies on the two benchmarking data sets. 

When we tested the SA profile generated by the 
FMO alone, we noticed that the trend of predicted SA 
profile often resembles the actual SA profile, except that 
the dynamic range of the predicted SA profile is 
consistently smaller. This may be due to the averaging 
effects over the neighboring residues when building the 
SA profile using Equation (2), although such an average 
reduces the noise for better prediction accuracy overall. 
Since the neural networks function well as the signal 
amplifiers, we trained a neural network using the sliding 
window scheme described in Section 2.2 with the 
window size 13.  This network was not used in the final 
MUPRED as there appears to be no practical advantage 
in amplifying signals while integrating the feature sets. 
The performances of our systems as a two class-
classifiers on the various data sets are given in Figure 2 
(a-d). The plot on the left illustrates the distribution of 
the RSA in the corresponding data set, while the plot on 
the right contains the classification accuracies and the 
Matthew’s correlation coefficients at various 
classification thresholds. The plots show that integrating 
FMO and PSSM using a neural network significantly 
improves the prediction accuracy over the FMO 
prediction alone or the FMO prediction with a neural 
network. 

We compare MUPRED with existing methods on 
the two most widely used data sets. The comparison in 
terms of two-state accuracy on the RS126 data set is 
presented in Table 1, while the comparison on the 
MN215 is presented in Table 2. The MAEs of 
MUPRED on RPS, the SCOP derived independent set, 
RS126 and MN215 are 14.17%, 15.29%, 14.31% and 
13.6%, respectively. The Pearson correlation 
coefficients of our method on RPS, the SCOP derived 
independent set, RS126 and MN215 are 0.72, 0.69, 0.71 
and 0.72, respectively. Garg et al.12 reported the Pearson 
correlation coefficient of 0.67 on the MN215 data set. In 
both the comparisons, MUPRED has the highest 
prediction accuracy in most cases. The MAE and the 
Pearson correlation coefficient on the RPS and the 
SCOP derived set indicate that the overtraining did not 
occur when we trained our neural networks. 

The program is implemented in the ANSI 
compatible C programming language. The regression 

analysis performed on the computation time of our 
method on a Pentium-4, 3 GHz machine with 2 GB of 
RAM indicates that the prediction time is a linear 
function of the sequence length and requires 0.55 
sec/residue, including the time required for calculating 
the profile using the PSI-BLAST. The peak memory 
requirement is under 20 MB. 

 
Table 1. The comparison of MUPRED with existing methods on the 
RS126 data set. The performance reported is the two-state accuracy 
obtained by using different threshold values. 

 
Threshold/Method A B C D E 

0 87 86 - 86 87 
5 77 - - 80 82 
9 78 75 78 - - 

16 79 75 78 78 79 
23 79 - 77 - - 
25 79 - - 77 78 

A- Current work; B-Rost and Sander, 1994; C-Manesh et al., 2001; 
D-Kim and Park, 2004;E-Sim et al., 2005. The ‘-‘ indicates that no 
information is available. 

 
Table 2. The comparison of MUPRED with existing methods on the 
MN215 data set. The performace reported is the two-state accuracy 
obtained by using different threshold values. 

 
Threshold/Method A C F G H 

4 77 75 - - - 
5 77 - 75 77 75 
9 78 76 - - - 

10 78 - 71 78 77 
16 79 76 - - - 
20 79 - - 78 78 
25 79 74 70 78 - 
30 79 - - - 78 
36 80 74 - - - 
40 80 - - - 78 
49 81 80 - - - 
50 2 - 76 - 81 
60 86 - - - 85 
64 88 97 - - - 
70 91 - - - 91 
80 95 - - - 95 
81 96 81 - - - 

A-current work; C- Manesh et al., 2001; F- Ahmed and Gromiha, 
2002; G- Adamczak et al., 2004 ; H- Garg et al., 2005. The ‘-‘ 
indicates that no information is available. 
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(a) 

    
(b) 

     
(c) 

   
(d) 

 
Fig. 2. The histograms showing the compositions of the RSAa in various data sets (Left) and performance of our methods on each of the data sets 
(Right). The classification threshold is varied along the x-axis, while the two-class classification accuracy (the top three curves) is plotted using the 
y-axis on the left, while the Matthew’s correlation coefficient (the bottom three curves) is plotted using the y-axis on the right. (a) Training set of 
1657 proteins; (b) SCOP data set with 3457 proteins; (c) Rost and Sander 126 protein set; (d) Manesh 215 protein set.  



201 

4.   DISCUSSION 

The proposed SA prediction system has some similarity 
to our secondary structure prediction system24. The key 
difference is that the former is a function approximation, 
while the later is a classification problem. Our method 
uses the structural information in the PDB more 
efficiently than the existing methods and therefore, 
reduces the dependence on availability of homologous 
sequences in a sequence database for building a well 
defined profile. At one extreme, the query sequence has 
many close homologs in the database of known 
sequences resulting in a well-defined PSSM. In such 
cases, our procedure uses profile-sequence alignment for 
finding similar fragments (exploiting both local and 
global similarities) in the RPS.  Therefore, both PSSM 
and FMO contribute well for the final prediction. At 
other extreme where the sequence does not have close 
homologs, the PSSM is just the scoring matrix used in 
the alignment procedure. In such situations, our 
procedure is equivalent to searching for similar 
fragments in RPS using a sequence-sequence alignment. 
The homologous fragments (exploiting local similarities 
only) found by sequence-sequence alignment are 
effectively used by the FMO and therefore, has the 
protein structure contribution to the prediction with little 
or no help from PSSM.  The latter case is emulated by 
the system with FMO followed by a neural network, 
which provides an estimate of the lower bound of 
accuracy. Since the output of the neural network is RSA 
(in [0 1]) of the protein, the system allows a user to 
choose the number of states and related thresholds, if a 
classification of residues is desired. The users can 
multiply the RSA by their maximum solvent accessible 
areas of respective amino acids to obtain the real solvent 
accessibility values in terms of Å2. Unlike earlier 
methods, our system is transparent, weather it succeeds 
or fails. The predicted solvent accessibility for a given 
query protein can be traced back to proteins in the RPS 
that contributed for that prediction, giving additional 
insight to the users. One of the appealing features of our 
systems is that it need not be re-trained. As more and 
more representative structures are solved, their 
sequences just need to be added to the RPS and the 
algorithm will use the new information immediately. 
Over time, we expect our system increases the 
prediction accuracies automatically by having expanded 

nr and PDB databases, relieving the users or us from the 
burden of re-training the system in the future.  

5.   CONCLUSIONS 

We developed a new and unique system for effective SA 
prediction. We use PSSM and fuzzy mean operator to 
seamlessly integrate sequence profile and structural 
information into one system, which has not been 
achieved before. This combination enables successful 
predictions for the sequences with or without homologs 
in the database of protein sequences. Our results prove 
that the additional, complementary information provided 
by using the structural information has slightly improved 
the prediction accuracy. Our system will have increased 
performance accuracy as more protein structures are 
added to PDB and the expansion of the nr databases. 
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