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Many biological pathways that describe complex cellular processes are available in public and commercial databases as well as in the 
literature. However, each item focuses on a particular cellular function. Moreover, pathways differ in the way they are described in 
different sources, emphasizing complementary aspects of the biological system under study. Considering related pathways in a unified 
framework is essential for understanding their behavior and for elucidating and refining open issues involving such systems. To address 
these challenges we have developed a conditional pathway algebra, in which pathways are enriched with both new node types as well as 
additional edge types providing significantly more expressive power for the description of existing biological phenomena. During 
conditional pathway integration, some interactions are made dependent upon a specific predicate (the presence/absence of a protein, 
extracellular factors, etc.). Moreover, such integration enables distinguishing between different data sources and points out problematic 
interactions in the given pathways. We provide a formal definition of the algebra and prove some properties of its operations, such as 
closure, commutativity, and the lack of associativity. Some of these operations are essential when applied to several pathways to form 
an entire (sub)system. Our algebra is embodied in the Pathway Integration Environment (PIE) as a plugin for Cytoscape. To 
demonstrate the utility and effectiveness of our method, we have applied it to three well characterized yeast signaling pathways: (i) 
Pheromone response, (ii) Filamentous growth, and (iii) High osmolarity glycerol pathways.  Most of our computational observations are 
confirmed in the literature. 
Availability: upon request. 
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1.   INTRODUCTION 

Many biological networks and pathways that describe 
complex cellular processes are being reconstructed and 
are ready for analysis. This information pertains to a 
variety of functional aspects and different levels of 
abstraction, e.g. metabolism, signal transduction, and 
regulation, each providing a partial perspective on the 
biological issues at hand. Currently, the descriptions of 
individual pathways is stored in several – both public as 
well as commercial – databases (such as KEGG 1-3, 
MetaCyc 4, 5, iPath 6, Reactome 7, and STKE 44; see 8 for 
a review) using a variety of representations and 
presentation mechanisms; a wealth of information can 
also be found in the literature (in e.g. PubMed 45, where 
typically each paper describes the properties of a 
specific pathway or subsystem. Consequently, it is 
nearly impossible for a life science researcher to glean a 
comprehensive and integrative view of several pathways 
under one framework, which is a clear need for the 
systematic study of biological processes beyond 
encapsulated, specific functions. For example, when 
trying to elucidate drug response, it is critical to capture 

the impact of a substance (be it constitutive or 
administered) in its entirety.  

Examination of several pathways at the same time 
can enhance our understanding of the biological system 
under study. The pertinent pathways can be different, or 
be separate instances of the same pathway coming from 
various data sources, each emphasizing distinct aspects 
of the biological process. By combining these resources, 
we can recognize e.g. regulating factors in pathways and 
crosstalk between them. Such deep understanding of the 
biological systems can benefit in the investigation of e.g. 
positive response, resistance to treatment, and adverse 
drug reaction in pharmacogenetic studies 9-11. 

Thus we propose a method – and a tool that is based 
on it – for the integration of pathways reflecting 
inconsistencies among the data sources and producing a 
coherent subsystem, which – subsequently – can be 
analyzed by both static as well as dynamic methods and 
tools. For example, the latter type of analysis may 
consist of simulations of the resulting conditional 
pathway that can be now treated as one subsystem, 
assuming – of course – that the simulation engine can 
accommodate the richness of the conditional 



 

description, as is the case with several advanced analysis 
tools that have been devised recently,  such as12, 13. 

The challenge of pathway integration is 
compounded by both biological as well as technical 
issues. It is well known that cells of different types and 
from distinct tissues under various environmental 
conditions have different gene expression profiles, 
which are the results of activating slightly different 
pathways 14-18. Activating factors also play an important 
role in proteinb modes and localization within a cell. 
Data inconsistency between different data sources, e.g. 
the same reaction being described differently, should not 
be forgotten either. Moreover, studied pathways are 
often divided into several sub-pathways due to technical 
limitations. Therefore, inappropriate cutoffs should also 
be taken into consideration. 

Hence, during pathway integration all of the 
abovementioned stumbling blocks should be 
accommodated. The commonly used abstraction of a 
biological pathway as a labeled directed graph is not 
expressive enough to reflect minor but potentially 
critical differences between them. Many of those 
differences, such as tissue, cell type, and cell condition, 
are expressed verbally by biologists but cannot be 
included in current representations. Thus we developed 
a conditional pathway algebra, in which a "simple" 
pathway graph is enriched both with new node types as 
well as additional edge types accompanied with various 
attributes. We provide a formal definition of the algebra 
and prove some of its properties, such as closure and 
commutativity, and demonstrate its lack of associativity.  
Of these the most important is closure, i.e. ensuring that 
the resulting pathway is always contained in the set of 
pathways to which further operations are applicable.     

The algebra is embodied in the Pathway Integration 
Environment (PIE) as a plugin for Cytoscape, a general-
purpose, open-source environment for the large scale 
integration of molecular interaction network data and its 
visualization 19. We applied PIE to all possible two-way 
as well as the three-way integration of three well 
characterized yeast signaling pathways: (i) Pheromone; 
(ii) Filamentous growth and (iii) High osmolarity 
glycerol pathways; the obtained results are confirmed in 
the literature. 

                                                           
b We refer to proteins, but this holds for other biological entities as 

well. 

2.   METHODS 

To perform integration of pathways they must be 
represented as mathematical objects to which we can 
apply well-defined operations, thereby forming an 
algebra. We extend the common abstraction by which a 
pathway is represented as a graph, where proteins, 
genes, and small molecules are represented as labeled 
nodes, and interactions are represented as edges19-22: We 
add both node and edge types to reflect conditioning of 
activation. In this section we first define our conditional 
pathway algebra which includes various entities and 
operations for pathway integration. Then we describe 
the algorithms supporting the algebra's operations and 
prove a variety of properties that they preserve. Then we 
provide details concerning the implementation of a 
software tool embodying the algebra. We conclude this 
section with a description of the biological model 
system we used for validating our method.  Please note 
that readers who are less mathematically inclined can go 
directly to Section 2.4. 

2.1.   Model 

We model a biological pathway as a labeled, directed 
graph G(V, E), where the nodes represent biological 
entities (proteins, genes, small molecules, enzymes, 
mRNA, etc.) and the edges represent interactions and 
other relations between them. The set of nodes 
V comprises three types: regular biological entities (Vb), 
external (boundary) conditions (Ve), and putative 
conditions (Vp), which support the pathway integration 
process. Each node is labeled with a name, as detailed 
below. The set of edges E contains both common 
interactions between pairs of nodes in Vb 
( )( bbcomm VVE �� ), as well as conditional edges 
( condE , see formal definition below) where each starts 
at a node (of any type) and points to a common edge 13.  
The latter are used to model the case in which the 
activity of the common edge that is pointed at depends 
on the state of the start node, as explained below. Both 
types of edges can reflect either a positive or a negative 
effect: common edges denote e.g. activation or 
repression in regulation and signaling pathways, and 
conditional edges can represent either a positive or a 
negative dependency.   

Names of regular nodes are taken from a common 
namespace of genes, proteins, etc.; we assume that the 
same name is being used to denote a certain biological 



        

entity in all pathways under study (or that they are 
normalized by a pre-processing step) so as to allow their 
identification during the integration process. Additional 
attributes can be assigned both to whole pathways as 
well as to individual nodes: the former include cell type, 
tissue and physiological conditions, and the latter are 
e.g. cellular localization and activation state. 

When several common edges go into a single node 
their joint effect is open to interpretation and there are 
various dynamic models that can be used. One prevalent 
model, used for both signaling and regulation pathways, 
is the sigmoid model (e.g.23). This issue is beyond the 
scope of this paper, but we found it useful – for 
purposes of the integration process – to qualify a node 
as having the AND attribute if all its incoming edges 
should be active in the system for this node to be 
activate; for example, let X be a complex; then all its 
components should be present in the system for its 
formation. Further interpretation of the combined effect 
of the incoming edges is left to the ensuing analysis 
tools. 

Finally, we are ready to define conditional edges. 
For a given pathway P, let condw(e) be a conditional 
edge between node w ( Vw� ) and an edge e=(ub,vb), 
denoted w� e or w� (ub,vb). condw(e) expresses the fact 
that the activity of the pointed-at edge e is conditioned 
upon the status of the node w, e.g. whether it is active or 
not. There are 3 options for w: 
1. It is a common node [ bVw� ]: Note that ub in 

addition to being the source node of the edge e can 
also function as w, i.e. w=ub. 

2. It is an external conditions node [ eVw� ]: 
w� (ub,vb) 

3. It is a putative conditions (PC) node [ pVw� ]: 
w� (ub,vb) 
Notice, that the biological meaning of each type of 

conditional edges is different. Specifically, the last kind 
expresses a possible explanation for an edge e which is 
beyond a pathway's scope. One interpretation of a 
source PC node may be the presence of an additional 
protein or mRNA missing in the original pathway that 
has a role in regulating an edge it points to. By 
specifying pathways in which an edge e is present, the 
PC node can help in emphasizing that this edge is 
missing in other pathways. 

Furthermore, note that a conditional edge is a triple 
(rather than a pair) of nodes, i.e. 

))(( bbpebcond VVVVVE ����� ; thus – formally – 

it can be regarded as a hyperedge of size 3. Hence 
pathways in our representation are in fact directed 
hypergraphs where the maximum size of a hyperedge is 
3. Still, for sake of presentation, unless it is necessary 
we refer to conditional hyperedges as edges; similarly, 
we disregard the signs of edges (positive or negative). 
To summarize, a pathway is represented as P(V,E), 
where: condcommpeb EEEVVVV ����� , with 
labels associated with nodes, and signs – with edges. 

Next we define four merge operations between two 
pathways, P1 and P2: 
1. Graph Union (denoted P1 �P2), performed as the 

set union of both nodes and edges and is based on 
their name equality (Fig. 1a).  

2. Positive Conditional Merge (P1
�� P2, Fig. 1b). The 

result is a conditional pathway which is a 
refinement of the results obtained by graph union 
(Operation 1 above) where conditional edges are 
added that point to differences between P1 and P2 
thereby giving possible explanations to these 
discrepancies. The refinement is performed using 
conditional edges of the positive type that point to 
"edges that must be explained" (as the result of the 
Conditional Merge Algorithm, defined in Section 
2.2 below). 

3. Negative Conditional Merge (P1
�� P2, Fig. 1c).  As 

in Operation 2, but the conditional edges that are 
added are of the negative type. 

4. Mixed Conditional Merge (P1
		 P2, Fig. 1d). The 

result is a conditional graph composed of the result 
of operation (1) and both positive and negative 
conditional edges pointing to "edges that have to be 
explained". 

 
 
 
 
 
 
 
 
 
Fig. 1. The conditional pathway algebra operations. (A) Graph Union; (B) 
Positive Conditional Merge; (C) Negative Conditional Merge; and (D) 
Mixed Conditional Merge. 



 

2.2.   The Conditional Merge Algorithm 

The operations defined above are realized by the 
Conditional Merge algorithm.  We first perform the 
union of both graphs that will serve as the basis for 
further refinement. The union process detects the nodes 
that are present in both pathways, but some (or all) of 
whose outgoing edges are present in only one of the 
pathways; we call these outgoing edges "edges that must 
be explained" (denoted diffEdgeList). Then, according 
to the parameter mergeType, the algorithm finds 
appropriate explanations for these differences.  There 
are five possible explanations, denoted: AND attribute, 
local, upstream, external (boundary) conditions, and 
putative conditions (see 2.2.1).  The order in which we 
search for an explanation is defined by the user (see 
2.2.2) using the parameter mergeMode. In case an 
explanation for a specific edge was found, the search for 
an explanation for this edge is stopped. 

The pseudo-code for this algorithm is as follows; 
some of the support sub-functions are described briefly 
below. 
---------------------------------------------------------------------- 
Procedure ConditionalMerge (A, B, mergeType, mergeMode) 
---------------------------------------------------------------------- 
Input:   

Graphs A(VA, EA), B(VB, EB) 
mergeType: one of { 

Graph Union, Positive Conditional Merge, Negative 
Conditional Merge, Mixed Conditional Merge} 

mergeMode: one of {  
"Upstream", "Local, Upstream, External Conditions", 
"External Conditions, Local, Upstream"} 

Output: Graph G(V,E) // a merge result of A and B 
---------------------------------------------------------------------- 
G: A �B; 
if mergeType!= Graph Union then 

for each v in VA 
 VB 
   let vA: the node v in A, vB: the node v in B; 
   denote the outgoing edges from node v in graph G by 

out(vG); 
   // common edges leaving v in A but not in B 
   diffEdgeListA:= out(vA) / out(vB);     
   // common edges leaving v in B but not in A      
   diffEdgeListB:= out(vB) / out(vA);    
   removeExplainedEdges(A,B,diffEdgeListA); 
   removeExplainedEdges(B,A,diffEdgeListB); 
   if diffEdgeListA � Ø 

 then findExplanation(diffEdgeListA,vA,   mergeMode); 
   if diffEdgeListB � Ø 

      then findExplanation(diffEdgeListB,vB, mergeMode); 
return(G); 

---------------------------------------------------------------------- 

The procedure removeExplainedEdges removes the 
edges that have an explanation from its 3rd parameter. 
The procedure findExplanation finds the explanations 
(as per its last parameter) for the edges in its 1st 
parameter as explained in Section 2.2.1 below. In 
addition to the resulting merged graph, the algorithm 
also produces a list of inconsistent conditional edges. 

2.2.1.   Kinds of explanation 

As mentioned above, there are five possibilities for an 
edge e=(u,v) that must be explained (without loss of 
generality, we assume AVe� ). The first option is to 
ascribe an AND attribute to the node v which might be a 
complex; in this case that one of v's compounds is 
missing in Pathway B, the complex v will not be created 
and – therefore – edges from other compounds to it will 
be missing. The second possible explanation is local, in 
which a difference in node u's attributes explains e. A 
possible biological scenario: in cytosol u activates 
protein v which is not present in the nucleus, therefore 
activation is impossible. The third one is upstream in 
which we are looking for some protein w upstream of u 
that is present only in pathway A and which possibly 
stimulates v's activation by u, as described by a 
conditional edge. In case we do not find such a w, a PC 
node and a corresponding conditional edge are added; 
this provides the fourth possible explanation. The fifth 
kind of an explanation is an external condition in which 
we compare pathway attributes and add an external 
condition node and a conditional edge from it to an edge 
e. Such an explanation can be used in case that some 
processes are activated in heat shock but depressed in 
cold shock. 

2.2.2.   Merge mode 

For a given edge list, diffEdgeList, that contains edges 
to be explained, the order in which potential 
explanations are checked is defined by the merge mode 
we are in. This order, that is provided as a parameter 
(that can assume one of several possibilities) to the 
algorithm, can lead to significantly different merge 
results. Each of the possible modes reflects a slightly 
different biological approach: The "Upstream" mode, in 
which we look only for upstream differences in the 
graphs, is preferable in cases where we want to suppress 
system condition effects and are interested in 
investigating the effect of the pathway's structure. When 



        

we are interested in the detection of the differences 
starting from the node state and localization, i.e. the 
differences that are the closest to the node we are 
dealing with, the "Local, Upstream, External 
Conditions" mode should be chosen. External condition 
attributes are the last to look at since those signal effects 
come from outside the cell. The last mode, "External 
Conditions, Local, Upstream", is pretty similar to the 
previous one besides the assumption that the external 
condition attributes should be examined first.  The 
intuition is that it is meaningless to merge pathways that 
occur in different external conditions. 

2.2.3.   Inconsistency between edges 

For a given pathway A, let condw(e) be a conditional 
edge between a node AVw�  and an edge e=(u,v), 
(where AEe� ). During a conditional merge, we 
evaluate whether each of the previously added 
conditional edges is consistent with the merged 
pathways. This evaluation is based on the following 
truth-table: 

Case x: Regulation 
type in A 

y: Be E�  z: Bw V�  XOR(x,
y,z) 

Whether 
consistent 

1 + + + 1 Yes 
2 + + - 0 No 
3 + - + 0 No 
4 + - - 1 Yes 
5 - + + 0 No 
6 - + - 1 Yes 
7 - - + 1 Yes 
8 - - - 0 No 

Legend: In column X (regulation type) "+" means positive, "-" means 

negative; in columns Y, Z "+" means that the membership predicate 

holds and "-" means that it does not hold. 

Intuitively, when the regulation type is positive (denoted 
by +) the meaning is that w stimulates a reaction from u 
to v, i.e. in case w is inactive the edge from u to v will 
have no effect. The opposite is valid for a negative 
(denoted by -) type of regulation. Therefore, in Case 1, 
since we have positive regulation and w is present in 
Pathway B, it is reasonable that the edge e will be 
present as well. However, in Case 5, w that represses e is 
present, therefore e should not be present, contrary to 
what we have in the pathway and therefore it is a case of 
inconsistency.  All the other cases can be analyzed in a 
similar fashion. Moreover, it is evident from the table 
that this logic can be expressed mathematically by the 
XOR operator. 

2.3.   Properties of the Conditional 
Pathway Algebra 

Our algebra satisfies two important properties: closure 
and commutativity.  Recall that a set is closed under an 
operation if when applied to any members of the set the 
operation returns a value that is a member of the same 
set; similarly, it is closed under a collection of 
operations if it is closed under each of the operations 
individually. In our case, the system under consideration 
comprises graphs that describe pathways and the 
operations defined above. For lack of space, we omit the 
proof of this property, but we note that it allows us to 
apply the various operations on the results of previously 
performed operations without any restrictions. 

Commutativity means that for any two pathway 
graphs, P1 and P2, that are members of the set of 
conditional graphs, the order of the operands does not 
matter, i.e. e.g. P1

		 P2 = P2
		 P1 (and likewise for the 

other operations). Again, we omit the proofs for lack of 
space. 

Unfortunately, associativity does not hold for our 
algebra (except for the simple Graph Union operation). 
In other words, for three given graphs P1, P2, and P3 it is 
not necessarily the case that 

)()( 321321 PPPPPP �����  where �  is one of 
the other three operations. When our merge algorithm 
encounters inconsistency in the explanations, it allows 
for the user's intervention or leaves the previous 
explanation. Therefore, the result of the second 
operation depends on condition edges that were 
previously added as well as user intervention. 

2.4.   The Pathway Integration 
Environment (PIE) 

PIE is a software tool that realizes our conditional 
pathway algebra. It was implemented in Java as a plug-
in for Cytoscape, a free bioinformatics software 
platform for visualizing molecular interaction pathways 
and integrating these interactions with gene expression 
profiles and other static data 19. Therefore, we benefit 
from existing Cytoscape features: import/export of 
different file formats, pathway drawing and editing, 
searching and filtering of nodes and edges according to 
various attributes, and pathway visualization showing a 
variety of data attributes using visual means.    
We can divide PIE's functionality into two, as follows:  



 

1. Performing the Union and Merge operations; these 
operations were defined earlier in this section and 
are implemented in PIE.  

2. Enriching pathways with known data: 
� Attributes' data entry: Different conditions are 

stored in pathways, nodes, and edges as attributes. 
Whereas cell type, tissue, and physiological 
conditions (such as starvation and heat shock) that 
can be additionally assigned to a specified sub-
pathway are more appropriate to be referred to as 
pathway attributes, protein localization and 
activation state (phosphorylation, ubiquitination, 
glycozilation, etc.) are naturally represented as node 
attributes. Since PIE is implemented as a plug-in to 
Cytoscape, we could use an existing attributes 
platform. However, in the current version of 
Cytoscape an attribute value is assigned to all the 
proteins with the same id in all opened pathways. 
Sometimes we are interested in assigning different 
attribute values to the same protein in different 
pathways. Since it is critical, we implement this 
feature differently allowing a shorter and more 
intuitive way to assign attributes to nodes. 

� Adding conditional edges: Known dependencies 
that are expressed by conditional edges can be 
manually entered using the Cytoscape editor (which 
was enhanced by the HyperEdgeEditor plug-in to 
support this feature). Those conditional edges can 
utter conditional regulation on protein state, and 
localization within the cell by adding an activation 
or a repressing edge from the node itself to one of 
its outgoing edges. Similarly, by adding edges from 
another node to an edge that represents regulation 
we want to impose a condition on it. In addition, 
there is a possibility to add additional activating or 
repressing mediators to an already conditioned 
edge.  
  Note that a user can add another conditional 
edge in which a source node points to an existing 
conditional edge. Our algorithm will not generate 
such a situation; it can, however, work with such a 
pathway as an input. 

� Adding an AND attribute to a node: Not less 
important is the ability to emphasize that for the 
creation of some proteins, complexes, mRNAs, etc. 
there is a need in simultaneous regulation of several 
proteins, enzymes, etc. This property is 

implemented by PIE as an AND attribute of the 
node that is conditioned on others. 

2.5.   Pathways Under Study 

To validate our method we applied it to three well 
characterized Saccharomyces cerevisiae (yeast) 
pathways: the Filamentous Growth (FGP), Pheromone 
Signaling (PSP), and High Osmolarity Glycerol (HOGP) 
pathways as they are described in the Science magazine 
cell signaling database  STKE 44. Yeast is an important 
model system for eukaryotic organisms, and the selected 
pathways represent well-studioned and highly curated 
biological functions, allowing us to evaluate our in silico 
predictions: the pathways (as described in the rest of this 
section) each comprise a small and simple subsystem, 
but they are strongly interrelated so it is possible to 
check the predictions that were obtained when 
integrating them. Still, each STKE pathway entry had to 
be corrected to reflect later updates in the literature and 
some curation errors; these changes are specified herein 
for each of the cases under network correction. 

� Filamentous Growth Pathway (FGP)  48  
In response to nitrogen starvation and other signals, 
diploid a/� yeast cells undergo a developmental change 
and switch to a filamentous form of growth called 
pseudohyphal development. This transition includes cell 
elongation, a switch to a unipolar budding pattern, 
maintenance of the attachment between mother and 
daughter cells, and the consequent ability to invade 
semisolid media. This morphological change is likely to 
cause a foraging response that allows cells to scavenge 
for nutrients. In haploid cells this switch is termed 
haploid invasive growth 24, 25. 
Network correction. The database entry includes the 
Fus3 repressing Tec1 edge which is not functionally 
related to this network; it exists only when the 
pheromone pathway is active as one way to represent 
cross-talk between the FGP and PSP  26, 27.  The authors 
probably added this edge to the network to show a 
broader view of regulation for this pathway. We, 
however, thought that moving this edge to the PSP (Fig. 
2a) will provide a more correct view of the networks.       
Another correction was made with the Ste11 and Ste50 
nodes. All three pathways under study include these 
nodes; in two of the networks the edge between these 
nodes is described as activation, whereas in the third 
network it appears as neutral. Base on networks 



        

description and literature 28-31, we decided to accept the 
neutral form of the edge (Fig. 2b). 
Overall this network included 32 nodes and 40 edges. 

� Pheromone Signaling Pathway (PSP) 49 
Yeast cells can exist as either haploid or diploid cells. 
Haploid cells of the opposite mating type (a or ) can 
mate, i.e. fuse and form a diploid. Cellular responses to 
mating include: arrest in the G1 phase of the cell-cycle, 
oriented growth towards the mating partner, and – 
ultimately – fusion of the plasma membranes of the 
mating partners, followed shortly thereafter by the 
fusion of their nuclei 24, 32. 
Network correction. We added the Tec1 node and the 
Fus3 repressing Tec1 edge from the FGP (see text above 
for explanation). We also changed the edge between the 
nodes Ste11 and Ste50 to be neutral as in the FGP (Fig. 
2b, text above). Furthermore, based on the networks 
explanation and literature 24, 25, 32, we decided to change 
Fus3 to Dig1/2  edges  from activation to repression 
(Fig. 2c).  
Overall this network included 32 nodes and 46 edges. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Network corrections for the pathways under study. 

� High Osmolarity Glycerol Pathway (HOGP) 50  
The internal osmolarity of a growing yeast cell is 
maintained to be higher than the external osmolarity. 
Increasing external osmolarity is a commonly 
encountered stress for a yeast cell in various natural 
environments such as a split-open grape drying under 
the sun, a Petri dish left open in the incubator, or the 
start of fermentation when sugar is added. The high 
osmolarity glycerol (HOG) MAPK pathway is activated 
by an increased environmental osmolarity and results in 
a rise of the cellular glycerol concentration so as to 
adapt the intracellular osmotic pressure 24, 33. 
Network correction: No changes were necessary for this 
network. 
Overall this network included 29 nodes 31 edges. 

3.   RESULTS AND DISCUSSION 

We defined a conditional pathway algebra that safely 
extends the traditional graph theoretical-based pathway 
description model to include e.g. protein localization 
and external conditions in which pathways are activated, 
and take these factors into consideration during pathway 
integration. Not only is it the case that no information is 
lost during the integration process, but rather new 
information regarding either of the pathways and about 
crosstalk between them – as well as possible effects of 
some proteins on specific regulations – can be 
generated. 

PIE is a bioinformatic tool that implements the 
formal algebra and the integration algorithm. It was 
applied successfully to several cases, as described in this 
section. Moreover, it proved to be an excellent research 
tool: each of the conditional edges that were generated 
by the conditional merge algorithm contains important 
information about the relationships between the 
involved pathways, the reliability of the edges in their 
original description, or lack of pertinent information in 
it. Each conditional edge can then be validated by 
performing wet experiments or a literature search. In the 
integration experiments that we performed and report 
herein, no contradictions were detected between the 
literature and conditional edges that were added to the 
graphs. Moreover, in one of the cases, when a 
contradiction seemed to appear, we found a more recent 
paper that corrected it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Positive Conditional Merge of the pheromone signaling 

(nodes shown as rounded rectangles) and filamentous growth 

(hexagonal nodes) pathways. Nodes in the intersection of the 

pathways appear as ellipses. 

 



 

� Pheromone Signaling pathway ��  Filamentous 
Growth pathway 

The resulting network includes 62 nodes, 9 of which are 
common. Out of 105 edges, only 9 edges have to be 
explained and this is done by adding merely 12 
conditional edges. Still, each and every one of these 
edges reflects either some biological observation or the 
lack of important data in the original description, as 
explained next. 

The FGP is composed of at least three signaling 
modalities that control the switch from budding to 
filamentous growth in S. cerevisiae 34. The core of the 
main pathway is a three-tiered mitogen-activated protein 
kinase (MAPK) cascade 34. This cascade shares multiple 
components with the PSP that uses almost the same 
MAPK cascade, while the other two modalities do not 
show any overlap with the PSP (24, 35 and Fig. 3). In fact, 
these two pathways are an excellent example for the 
case in which two pathways that are quite different in 
their original composition converge to one unit centered 
around an almost identical subcircuit that in itself is 
highly conserved in evolution. The main difference 
between the two pathways is that they use two different 
MAPKs as the target of the phosphorylation cascade: 
Kss1 in the FGP and Fus3 in the PSP 34, 36. In the 
pheromone signaling pathway, Fus3 – together with the 
MAPKK Ste7 and the MAPKKK Ste11 – is bound to 
Ste5, a scaffold protein that is PSP specific 34, 36.  In 
addition, Fus3 – in response to a mating signal – is  
specifically down regulating Tec1, a FGP specific 
transcription factor 27. In the end of the MAPK FGP, 
Tec1 forms a heterodimer with another transcription 
factor, Ste12, to mediate various gene expression 
responses 24, 25. In the PSP, Tec1 is down regulated and 
two Ste12 molecules join together to form a homodimer 
that induces or represses genes that are required for 
successful mating 24, 32. 

The conditional merge algorithm succeeded in 
pinpointing the right players that are specific to one of 
the pathways, meaning: Ste5 and Fus3 in the PSP and 
Kss1 and Tec1 in the FGP. We also expected that the 
algorithm would identify other pathway specific 
components that are more upstream to the MAPK core 
of the pathways, and indeed the Ste20 to Bmh1/2 edges 
are examples for such components (Fig. 4a): Bmh1 and 
Bmh2 are two genes in yeast that show strong similarity 
to the 14-3-3 proteins (acidic dimeric molecules that 
likely play a role in signal transduction). Bmh1 and 

Bmh2 – when associated with Ste20 – are required for 
FGP but not for the PSP 37. Ras2 and Msb2 are the two 
Ste20 upstream components of the FGP that are specific 
to this pathway (34 and Fig. 3). The algorithm correctly 
identified this relationship. 

The conditional merge algorithm also identified the 
proteins that are specific to only one of the pathways 
and that will be used as explanations for the edges that 
must be explained. The edge from Ste7 to Kss1 (Fig. 4b) 
is a good example for this: as explained previously, one 
of the main differences between the FGP and the PSP is 
the use of two different MAPKs, Kss1 and Fus3. As 
described in Section 2.5, Kss1 is used only in the FGP; 
furthermore, Ras2 and Msb2 are the inputs for the FGP 
(34 and Fig. 3). The algorithm recognized that Kss1 is 
unique to the FGP and inferred that Ras2 and Msb2 are 
responsible for this edge. Moreover, the algorithm 
correctly connected between the FGP Kss1 MAPK and 
this pathway's unique output Tec1 and Flo11 (the edges 
from Ste12 to Tec1 and from Ste12 to Flo11; see Fig. 
4c).  

An additional feature of our algorithm is to identify 
edges with low confidence or incomplete data. The 
Cdc42 and Ste50 nodes appear in all of the three 
pathways, but this edge exists only in the FGP (Fig. 4b). 
The algorithm found this conflict and marked it for 
further questioning. Although this edge exists in the 
FGP, it appears there with low confidence. The three 
networks we used for our analysis were last update in 
2005. Interestingly, a more recent paper reports that this 
edge exists in the HOGP as well 38. Apparently the data 
for this edge is not complete; the algorithm recognized 
this fact and used the available data to call Ras2 and 
Msb2 as the best explanations for this edge using 
information that is captured in those pathways. 

Finally, an important property of our algorithm is 
the ability to use different merge operations (activation, 
repression, or both repression and activation). The usage 
of these operations may provide varying perspectives of 
the networks and highlight interesting nodes. When 
choosing conditional activation/repression, we can 
obtain different graphs (Fig. 5). In case of the FGP and 
PSP, on the edge Ste7 to MAPK (Fig. 4d, 4e) we get 
two different MAPKs and explanations, which are both 
reasonable. The algorithm explains the edge by the 
nearest explanation. After examination of the results of 
different merge operations for the networks we worked 



        

with, we concluded that the most appropriate operation 
was indeed "conditional merge activation". 
 
 
 
 
 
 
 
 
Fig. 4. Details of the Positive Conditional Merge of the pheromone 

signaling and filamentous growth pathways (excerpts from Fig. 3). 

� Pheromone Signaling pathway ��  HOG pathway 
The PSP and the HOGP share some components and 
regulation, but this commonality is less than what we 
found between the pheromone signaling and FGP (24, 33, 

39 and Fig. 6). Thus, in their integration we can see more 
examples of "Putative Conditions" (e.g. PC:Pheromone 
Signaling and PC:HOG). 

The obtained network includes 63 nodes, 6 of which 
are common. Out of 105 edges, only 6 edges have to be 
explained and it is done by 7 conditional edges. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Mixed Conditional Merge of the pheromone signaling and 

filamentous growth pathways. The shape coding is as in Fig. 3. 

Notably, here the algorithm identified pathway 
specific components that are more upstream, for 
example in the case of the Ste11 to Pbs2 edge (Fig. 7a) 
the algorithm detected that the Ste11 node is present in 
both pathways but the Pbs2 node is present only in the 
HOGP (Fig. 6). As explained in Section 2.2.1, the 
algorithm looks upstream to find an appropriate 
explanation to this edge, and it found that the unique 
elements of the HOG pathway that can be responsible 
for this edge are Msb2 and Sho1. When we looked in 
the literature we found that indeed these proteins were 
associated with Pbs2 activation through Ste11 40, 41. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Positive Conditional Merge of the pheromone signaling 

(hexagons) and HOG (rounded recrtangles) pathways. Nodes in the 

intersection of the pathways appear as ellipses, and Putative 

Condition (PC) nodes are rectangles. 

A similar situation (one node present in both 
pathways and another that is unique to only one 
pathway) is manifested in two edges: Ptp2/3 to Fus3 and 
Ptp2/3 to Hog1. There is, however, one important 
difference compared to the previous situation: whereas 
then the algorithm had upstream components to resolve 
the conflict with, now there are no upstream nodes to 
explain the conflict (Fig. 6). In this situation the 
algorithm adds a PC node and an edge from it to the 
pathway's original edge (Fig. 7b); this unknown node is 
a sign to the user that he or she needs to find some other 
explanation to the conflict. 
 
 
 
 
 
Fig. 7.  Details of the Positive Conditional Merge of the pheromone 

signaling and HOG pathways (excerpts from Fig. 6). 

� Filamentous Growth pathway ��  Pheromone 
Signaling pathway ��  HOG pathway 

When merging three pathways the situation is more 
complicated since inconsistencies between some of the 
edges can appear. Furthermore, the outcome may 
depend on the order of the merging, due to the lack of 
associativity. On the other hand, we may obtain a more 
accurate explanation after adding the 3rd pathway for an 
edge for which we had a poor explanation when merging 
only two of the three pathways. For example, if we 
merge the three pathways in this order: (FGP ��  PSP) ��  
HOGP, we get the conflict shown in Fig. 8a.  If, 
however, we perform the merging in another order: FGP 
��  (PSP ��  HOGP), we get a new edge with one 



 

explanation (Fig. 8b). This, incidentally, supports Ras2 
as being the better explanation. 

Let us consider the results of the first ordering, 
namely (FGP ��  PSP) ��  HOGP. All new regulations that 
were added to the (FGP ��  PSP) pathway after merging 
it with the HOGP pathway were the same as those 
observed and explained for the (PSP ��  HOGP) merger 
(described above). This result is not surprising since the 
FGP and the HOGP hardly share any proteins. No 
additional regulations were received also in the case of 
the other merging order, namely FGP ��  (PSP ��  
HOGP), for the same reason as above. 

Note, however, that as the number of merged 
pathways increases (more than two), the results could be 
more cluttered and the user may get new inconsistent 
explanations (as exemplified in Figs. 8). In case the 
merge order is FGP ��  (PSP ��  HOGP), we obtain 2 new 
inconsistencies that were not present in the previous 
merge order. In this situation, the user must use the 
algorithm with care and to decide – based on other 
sources of information – what the best explanation 
would be. 
 
 
 
 
 
 
 
 
Fig. 8. Inconsistent edges during the Positive Conditional Merge of 

the filamentous growth, pheromone signaling, and HOG pathways 

4.   SUMMARY AND FUTURE WORK 

PIE is a powerful tool for combining data from different 
sources that describe pathways based on experiments in 
a variety of conditions. It is based on the conditional 
pathway algebra that we have defined, enabling its users 
to enrich biological pathway representation with 
knowledge that comes from the experimental conditions 
that were used and from previous studies. It also allows 
systems biologists to add to the pathways' 
representations important information that has up to now 
been described informally (in words), such as "this 
regulation occurs only if a certain protein is 
phosphorilated and is located in the cytoplasma or is 
conditioned on the presence/absence of some other 
protein in the system". In other cases, we are also able 

now to express the notion that for activating some 
protein X, there is a need in simultaneous co-regulation 
of three other proteins, X1, X2, and X3. Moreover, PIE 
can point out interactions that are conditioned by 
specific regulators (presence/absence of proteins, co-
regulation, extracellular factor etc.); using simple graph 
union we would miss these issues, with no way for 
reconstruction. Finally, PIE can be used not only for 
safe information integration; it can also be leveraged as 
a research tool. During pathway integration, the user – 
using different modes of merging – can see both "core" 
differences between pathways as well as edges with low 
confidence or without enough support information. 
Focusing on and further investigation of these 
differences can enhance our understanding of the 
biological systems under study.  

A natural next step would be the integration of 
pathways of different types, e.g. signaling, regulation, 
and metabolic pathways that all pertain to the same 
biological function, into one framework. This would 
lead us to deeper understanding of biological systems as 
a whole. 

Finally there is the technical challenge of dealing 
with pathways that are represented in different, 
divergent file formats that are being used for pathway 
retrieval. These are both XML-based representations, 
such as BioPAX 46, SBML 42, KGML 47, and XGMML 
43, as well as text formats, such as SIF. Platforms like 
Cytoscape are making progress towards the convergence 
of this issue. 
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